Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Med ; 28(1): 131, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348276

RESUMO

BACKGROUND: Respiratory failure in severe coronavirus disease 2019 (COVID-19) is associated with a severe inflammatory response. Acetylcholine (ACh) reduces systemic inflammation in experimental bacterial and viral infections. Pyridostigmine increases the half-life of endogenous ACh, potentially reducing systemic inflammation. We aimed to determine if pyridostigmine decreases a composite outcome of invasive mechanical ventilation (IMV) and death in adult patients with severe COVID-19. METHODS: We performed a double-blinded, placebo-controlled, phase 2/3 randomized controlled trial of oral pyridostigmine (60 mg/day) or placebo as add-on therapy in adult patients admitted due to confirmed severe COVID-19 not requiring IMV at enrollment. The primary outcome was a composite of IMV or death by day 28. Secondary outcomes included reduction of inflammatory markers and circulating cytokines, and 90-day mortality. Adverse events (AEs) related to study treatment were documented and described. RESULTS: We recruited 188 participants (94 per group); 112 (59.6%) were men; the median (IQR) age was 52 (44-64) years. The study was terminated early due to a significant reduction in the primary outcome in the treatment arm and increased difficulty with recruitment. The primary outcome occurred in 22 (23.4%) participants in the placebo group vs. 11 (11.7%) in the pyridostigmine group (hazard ratio, 0.47, 95% confidence interval 0.24-0.9; P = 0.03). This effect was driven by a reduction in mortality (19 vs. 8 deaths, respectively). CONCLUSION: Our data indicate that adding pyridostigmine to standard care reduces mortality among patients hospitalized for severe COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Brometo de Piridostigmina/uso terapêutico , SARS-CoV-2 , Respiração Artificial , Inflamação , Resultado do Tratamento
2.
mBio ; 13(4): e0084022, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35735743

RESUMO

Global population immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is accumulating through heterogeneous combinations of infection and vaccination. Vaccine distribution in low- and middle-income countries has been variable and reliant on diverse vaccine platforms. We studied B-cell immunity in Mexico, a middle-income country where five different vaccines have been deployed to populations with high SARS-CoV-2 incidences. Levels of antibodies that bound a stabilized prefusion spike trimer, neutralizing antibody titers, and memory B-cell expansion correlated with each other across vaccine platforms. Nevertheless, the vaccines elicited variable levels of B-cell immunity, and the majority of recipients had undetectable neutralizing activity against the recently emergent omicron variant. SARS-CoV-2 infection, experienced before or after vaccination, potentiated B-cell immune responses and enabled the generation of neutralizing activity against omicron and SARS-CoV for all vaccines in nearly all individuals. These findings suggest that broad population immunity to SARS-CoV-2 will eventually be achieved but by heterogeneous paths. IMPORTANCE The majority of studies on SARS-CoV-2 vaccine-elicited immunity and immune evasion have focused on single vaccines corresponding to those distributed in high-income countries. However, in low- and middle-income countries, vaccine deployment has been far less uniform. It is therefore important to determine the levels of immunity elicited by vaccines that have been deployed globally. Such data should help inform policy. Thus, this paper is very much a "real-world" study that focuses on a middle-income country, Mexico, in which five different vaccines based on mRNA, adenovirus, and inactivated-virus platforms have been extensively deployed, while (as documented in our study) SARS-CoV-2 variants with increasing degrees of immune evasiveness have propagated in the Mexican population, culminating in the recent emergence of B.1.1.529 (omicron).


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
3.
medRxiv ; 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35169812

RESUMO

Global population immunity to SARS-CoV-2 is accumulating through heterogenous combinations of infection and vaccination. Vaccine distribution in low- and middle-income countries has been variable and reliant on diverse vaccine platforms. We studied B-cell immunity in Mexico, a middle-income country where five different vaccines have been deployed to populations with high SARS-CoV-2 incidence. Levels of antibodies that bound a stabilized prefusion spike trimer, neutralizing antibody titers and memory B-cell expansion correlated with each other across vaccine platforms. Nevertheless, the vaccines elicited variable levels of B-cell immunity, and the majority of recipients had undetectable neutralizing activity against the recently emergent omicron variant. SARS-CoV-2 infection, experienced prior to or after vaccination potentiated B-cell immune responses and enabled the generation of neutralizing activity against omicron and SARS-CoV for all vaccines in nearly all individuals. These findings suggest that broad population immunity to SARS-CoV-2 will eventually be achieved, but by heterogenous paths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...