Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Ann Surg Oncol ; 31(2): 1310-1318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37914923

RESUMO

BACKGROUND: We examined the impact of early (0-4 weeks after discharge) versus late (> 4-8 weeks after discharge) initiation of adjuvant chemotherapy on pancreatic adenocarcinoma survival. METHODS: We used Danish population-based healthcare registries to emulate a hypothetical target trial using the clone-censor-weight approach. All eligible patients were cloned with one clone assigned to 'early initiation' and one clone assigned to 'late initiation'. Clones were censored when the assigned treatment was no longer compatible with the actual treatment. Informative censoring was addressed using inverse probability of censoring weighting. RESULTS: We included 1491 patients in a hypothetical target trial, of whom 32.3% initiated chemotherapy within 0-4 weeks and 38.3% between > 4 and 8 weeks after discharge for pancreatic adenocarcinoma surgery; 206 (13.8%) initiated chemotherapy after > 8 weeks, and 232 (15.6%) did not initiate chemotherapy. Median overall survival was 30.4 and 29.9 months in late and early initiators, respectively. The absolute differences in OS, comparing late with early initiators, were 3.2% (95% confidence interval [CI] - 1.5%, 7.9%), - 0.7% (95% CI - 7.2%, 5.8%), and 3.2% (95% CI - 2.8%, 9.3%) at 1, 3, and 5 years, respectively. Late initiators had a higher increase in albumin levels as well as higher pretreatment albumin values. CONCLUSIONS: Postponement of adjuvant chemotherapy up to 8 weeks after discharge from pancreatic adenocarcinoma surgery is safe and may allow more patients to receive adjuvant therapy due to better recovery.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/cirurgia , Quimioterapia Adjuvante , Terapia Combinada , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Albuminas
2.
Pharmacoepidemiol Drug Saf ; 33(1): e5726, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946571

RESUMO

PURPOSE: We examined the association between use of beta-blockers and survival in pancreatic cancer patients after curative-intent surgery. METHODS: Using Danish healthcare registries, we conducted a population-based cohort study of all patients undergoing curative-intent surgery for pancreatic cancer in Denmark 1997-2021. We defined beta-blocker use according to exposure before surgery as current (≤90 days), recent (91-365 days), or former (366-730 days) use, requiring at least one filled prescription. Patients were followed from the date of surgery for up to 5 years. We used Cox regression to compute hazard ratios (HRs) of deaths with 95% confidence intervals (CIs), adjusting for age, sex, year of diagnosis, cardiovascular disease, diabetes, liver disease, alcohol, and smoking. We also conducted an active comparator analysis, where we used angiotensin-converting enzyme inhibitors/angiotensin-receptor blockers as comparators instead of nonusers. RESULTS: We included 2592 patients, of which 16.7% were beta-blocker users. Median survival for the entire population was 24.4 months. Beta-blocker use was associated with increased mortality (adjusted HR: 1.18; 95% CI: 1.04-1.34). This was evident in current (adjusted HR: 1.19; 95% CI: 1.02-1.38) and recent (adjusted HR: 1.29; 95% CI: 1.04-1.59) but not former (adjusted HR: 0.91; 95% CI: 0.64-1.43) users. In the active comparator analysis, the association between beta-blocker exposure and mortality attenuated slightly (adjusted HR: 1.12; 95% CI: 0.93-1.35). CONCLUSIONS: We observed an association between beta-blocker use and increased mortality in patients operated for pancreatic cancer. Findings are likely explained by confounding by indication.


Assuntos
Antagonistas Adrenérgicos beta , Neoplasias Pancreáticas , Humanos , Estudos de Coortes , Antagonistas Adrenérgicos beta/efeitos adversos , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/cirurgia , Inibidores da Enzima Conversora de Angiotensina , Modelos de Riscos Proporcionais
3.
Sci Rep ; 13(1): 13544, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598250

RESUMO

The upper limit for partial hepatectomy (PH) in rats is 90%, which is associated with an increased risk of post-hepatectomy liver failure (PHLF), correlating with high mortality. Sixty-eight rats were randomized to 90% PH, sham operation, or no surgery. Further block randomization was performed to determine the time of euthanasia, whether 12, 24, or 48 h after surgery. A general distress score (GDS) was calculated to distinguish between rats with reversible (GDS < 10) and irreversible PHLF (GDS ≥ 10). At euthanasia, the liver remnant and blood were collected. Liver-specific biochemistry and regeneration ratio were measured. Hepatocyte proliferation and volume were estimated using stereological methods. All rats subjected to 90% experienced biochemical PHLF. The biochemical and morphological liver responses did not differ between the groups until 48 h after surgery. At 48 h, liver regeneration and function were significantly improved in survivors. The peak mean regeneration ratio was 15% for rats with irreversible PHLF compared to 26% for rats with reversible PHLF. The 90% PH rat model was associated with PHLF and high mortality. Irreversible PHLF was characterized by impaired liver regeneration capacity and an insufficient ability to metabolize ammonia.


Assuntos
Insuficiência Hepática , Falência Hepática , Animais , Ratos , Hepatectomia/efeitos adversos , Falência Hepática/etiologia , Regeneração Hepática
4.
Nature ; 619(7971): 782-787, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438520

RESUMO

Many communities in low- and middle-income countries globally lack sustainable, cost-effective and mutually beneficial solutions for infectious disease, food, water and poverty challenges, despite their inherent interdependence1-7. Here we provide support for the hypothesis that agricultural development and fertilizer use in West Africa increase the burden of the parasitic disease schistosomiasis by fuelling the growth of submerged aquatic vegetation that chokes out water access points and serves as habitat for freshwater snails that transmit Schistosoma parasites to more than 200 million people globally8-10. In a cluster randomized controlled trial (ClinicalTrials.gov: NCT03187366) in which we removed invasive submerged vegetation from water points at 8 of 16 villages (that is, clusters), control sites had 1.46 times higher intestinal Schistosoma infection rates in schoolchildren and lower open water access than removal sites. Vegetation removal did not have any detectable long-term adverse effects on local water quality or freshwater biodiversity. In feeding trials, the removed vegetation was as effective as traditional livestock feed but 41 to 179 times cheaper and converting the vegetation to compost provided private crop production and total (public health plus crop production benefits) benefit-to-cost ratios as high as 4.0 and 8.8, respectively. Thus, the approach yielded an economic incentive-with important public health co-benefits-to maintain cleared waterways and return nutrients captured in aquatic plants back to agriculture with promise of breaking poverty-disease traps. To facilitate targeting and scaling of the intervention, we lay the foundation for using remote sensing technology to detect snail habitats. By offering a rare, profitable, win-win approach to addressing food and water access, poverty alleviation, infectious disease control and environmental sustainability, we hope to inspire the interdisciplinary search for planetary health solutions11 to the many and formidable, co-dependent global grand challenges of the twenty-first century.


Assuntos
Agricultura , Ecossistema , Saúde da População Rural , Esquistossomose , Caramujos , Animais , Criança , Humanos , Esquistossomose/epidemiologia , Esquistossomose/prevenção & controle , Esquistossomose/transmissão , Caramujos/parasitologia , África Ocidental , Fertilizantes , Espécies Introduzidas , Intestinos/parasitologia , Água Doce , Plantas/metabolismo , Biodiversidade , Ração Animal , Qualidade da Água , Produção Agrícola/métodos , Saúde Pública , Pobreza/prevenção & controle , Organismos Aquáticos/metabolismo , Tecnologia de Sensoriamento Remoto
5.
Int J Health Geogr ; 22(1): 12, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268933

RESUMO

BACKGROUND: Although the presence of intermediate snails is a necessary condition for local schistosomiasis transmission to occur, using them as surveillance targets in areas approaching elimination is challenging because the patchy and dynamic quality of snail host habitats makes collecting and testing snails labor-intensive. Meanwhile, geospatial analyses that rely on remotely sensed data are becoming popular tools for identifying environmental conditions that contribute to pathogen emergence and persistence. METHODS: In this study, we assessed whether open-source environmental data can be used to predict the presence of human Schistosoma japonicum infections among households with a similar or improved degree of accuracy compared to prediction models developed using data from comprehensive snail surveys. To do this, we used infection data collected from rural communities in Southwestern China in 2016 to develop and compare the predictive performance of two Random Forest machine learning models: one built using snail survey data, and one using open-source environmental data. RESULTS: The environmental data models outperformed the snail data models in predicting household S. japonicum infection with an estimated accuracy and Cohen's kappa value of 0.89 and 0.49, respectively, in the environmental model, compared to an accuracy and kappa of 0.86 and 0.37 for the snail model. The Normalized Difference in Water Index (an indicator of surface water presence) within half to one kilometer of the home and the distance from the home to the nearest road were among the top performing predictors in our final model. Homes were more likely to have infected residents if they were further from roads, or nearer to waterways. CONCLUSION: Our results suggest that in low-transmission environments, leveraging open-source environmental data can yield more accurate identification of pockets of human infection than using snail surveys. Furthermore, the variable importance measures from our models point to aspects of the local environment that may indicate increased risk of schistosomiasis. For example, households were more likely to have infected residents if they were further from roads or were surrounded by more surface water, highlighting areas to target in future surveillance and control efforts.


Assuntos
Esquistossomose Japônica , Esquistossomose , Humanos , Esquistossomose/diagnóstico , Esquistossomose/epidemiologia , Esquistossomose/prevenção & controle , Esquistossomose Japônica/epidemiologia , Esquistossomose Japônica/prevenção & controle , Ecossistema , China/epidemiologia , Água
6.
Animal Model Exp Med ; 6(3): 266-273, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37183349

RESUMO

BACKGROUND: The upper limit for liver resections in rats is approximately 90%. In the early postoperative phase, mortality increases. The aim of the present study was to validate the rat model of 90% partial hepatectomy (PH) as a model of post-hepatectomy liver failure (PHLF). Further, we wanted to test a quantitative scoring system as a detector of lethal outcomes caused by PHLF in rats. METHODS: Sixty-eight rats were randomized to 90% PH, sham operation, or no surgery. Further, block randomization was performed based on time of euthanization: 12, 24, or 48 h after surgery. A general distress score (GDS) ≥10 during the day or ≥6 at midnight prompted early euthanization and classification as nonsurvivor. Animals euthanized as planned were classified as survivors. During euthanization, blood and liver tissue were collected, and liver-specific biochemistry was evaluated. RESULTS: Based on the biochemical results, all animals subjected to 90% PH experienced PHLF. Seventeen rats were euthanized due to irreversible PHLF. The GDS increased for nonsurvivors within 12-18 h after surgery. The mean time for euthanization was 27 h after surgery. CONCLUSION: Based on the GDS and liver-specific biochemistry, we concluded that the model of 90% PH seems to be a proper model for investigating PHLF in rats. As a high GDS is associated with increased mortality, the GDS appears to be valuable in detecting lethal outcomes caused by PHLF in rats.


Assuntos
Falência Hepática , Neoplasias Hepáticas , Animais , Ratos , Hepatectomia/efeitos adversos , Hepatectomia/métodos , Falência Hepática/etiologia , Falência Hepática/cirurgia , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/cirurgia , Modelos Anatômicos
7.
PLoS One ; 18(4): e0283019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37053145

RESUMO

We present a study design and baseline results to establish the impact of interventions on peri-urban water access, security and quality in Kasai Oriental province of the Democratic Republic of the Congo. In standard development practice, program performance is tracked via monitoring and evaluation frameworks of varying sophistication and rigor. Monitoring and evaluation, while usually occurring nearly concurrently with program delivery, may or may not measure parameters that can identify performance with respect to the project's overall goals. Impact evaluations, often using tightly controlled trial designs and conducted over years, challenge iterative program evolution. This study will pilot an implementation science impact evaluation approach in the areas immediately surrounding 14 water service providers, at each surveying 100 randomly-selected households and conducting water quality assessments at 25 randomly-selected households and five water points every three months. We present preliminary point-of-collection and point-of-use baseline data. This study is utilizing a variety of short- and medium-term monitoring and impact evaluation methods to provide feedback at multiple points during the intervention. Rapid feedback monitoring will assess the continuity of water services, point-of-consumption and point-of-collection microbial water quality, household water security, household measures of health status, ability and willingness to pay for water and sanitation service provision, and service performance monitoring. Long-term evaluation will focus on the use of qualitative comparative analysis whereby we will investigate the combination of factors that lead to improved water access, security and quality.


Assuntos
Saneamento , Qualidade da Água , República Democrática do Congo
8.
Res Sq ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747768

RESUMO

Background: Although the presence of intermediate snails is a necessary condition for local schistosomiasis transmission to occur, using them as surveillance targets in areas approaching elimination is challenging because the patchy and dynamic quality of snail host habitats makes collecting and testing snails labor-intensive. Meanwhile, geospatial analyses that rely on remotely sensed data are becoming popular tools for identifying environmental conditions that contribute to pathogen emergence and persistence. Methods: In this study, we assessed whether open-source environmental data can be used to predict the presence of human Schistosoma japonicum infections among households with a similar or improved degree of accuracy compared to prediction models developed using data from comprehensive snail surveys. To do this, we used infection data collected from rural communities in Southwestern China in 2016 to develop and compare the predictive performance of two Random Forest machine learning models: one built using snail survey data, and one using open-source environmental data. Results: The environmental data models outperformed the snail data models in predicting household S. japonicum infection with an estimated accuracy and Cohen’s kappa value of 0.89 and 0.49, respectively, in the environmental model, compared to an accuracy and kappa of 0.86 and 0.37 for the snail model. The Normalized Difference in Water Index (NDWI) within half to one kilometer of the home and the distance from the home to the nearest road were among the top performing predictors in our final model. Homes were more likely to have infected residents if they were further from roads, or nearer to waterways. Conclusion: Our results suggest that in low-transmission environments, investing in training geographic information systems professionals to leverage open-source environmental data could yield more accurate identification of pockets of human infection than using snail surveys. Furthermore, the variable importance measures from our models point to aspects of the local environment that may indicate increased risk of schistosomiasis. For example, households were more likely to have infected residents if they were further from roads or were surrounded by more surface water, highlighting areas to target in future surveillance and control efforts.

9.
Environ Pollut ; 319: 120952, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36586553

RESUMO

Use of agrochemicals, including insecticides, is vital to food production and predicted to increase 2-5 fold by 2050. Previous studies have shown a positive association between agriculture and the human infectious disease schistosomiasis, which is problematic as this parasitic disease infects approximately 250 million people worldwide. Certain insecticides might runoff fields and be highly toxic to invertebrates, such as prawns in the genus Macrobrachium, that are biocontrol agents for snails that transmit the parasites causing schistosomiasis. We used a laboratory dose-response experiment and an observational field study to determine the relative toxicities of three pyrethroid (esfenvalerate, λ-cyhalothrin, and permethrin) and three organophosphate (chlorpyrifos, malathion, and terbufos) insecticides to Macrobrachium prawns. In the lab, pyrethroids were consistently several orders of magnitude more toxic than organophosphate insecticides, and more likely to runoff fields at lethal levels according to modeling data. At 31 water contact sites in the lower basin of the Senegal River where schistosomiasis is endemic, we found that Macrobrachium prawn survival was associated with pyrethroid but not organophosphate application rates to nearby crop fields after controlling for abiotic and prawn-level factors. Our laboratory and field results suggest that widely used pyrethroid insecticides can have strong non-target effects on Macrobrachium prawns that are biocontrol agents where 400 million people are at risk of human schistosomiasis. Understanding the ecotoxicology of high-risk insecticides may help improve human health in schistosomiasis-endemic regions undergoing agricultural expansion.


Assuntos
Clorpirifos , Inseticidas , Palaemonidae , Piretrinas , Esquistossomose , Animais , Humanos , Inseticidas/toxicidade , Piretrinas/toxicidade , Esquistossomose/epidemiologia , Esquistossomose/parasitologia , Permetrina , Palaemonidae/fisiologia
10.
Lancet Planet Health ; 6(11): e870-e879, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36370725

RESUMO

BACKGROUND: Billions of people living in poverty are at risk of environmentally mediated infectious diseases-that is, pathogens with environmental reservoirs that affect disease persistence and control and where environmental control of pathogens can reduce human risk. The complex ecology of these diseases creates a global health problem not easily solved with medical treatment alone. METHODS: We quantified the current global disease burden caused by environmentally mediated infectious diseases and used a structural equation model to explore environmental and socioeconomic factors associated with the human burden of environmentally mediated pathogens across all countries. FINDINGS: We found that around 80% (455 of 560) of WHO-tracked pathogen species known to infect humans are environmentally mediated, causing about 40% (129 488 of 359 341 disability-adjusted life years) of contemporary infectious disease burden (global loss of 130 million years of healthy life annually). The majority of this environmentally mediated disease burden occurs in tropical countries, and the poorest countries carry the highest burdens across all latitudes. We found weak associations between disease burden and biodiversity or agricultural land use at the global scale. In contrast, the proportion of people with rural poor livelihoods in a country was a strong proximate indicator of environmentally mediated infectious disease burden. Political stability and wealth were associated with improved sanitation, better health care, and lower proportions of rural poverty, indirectly resulting in lower burdens of environmentally mediated infections. Rarely, environmentally mediated pathogens can evolve into global pandemics (eg, HIV, COVID-19) affecting even the wealthiest communities. INTERPRETATION: The high and uneven burden of environmentally mediated infections highlights the need for innovative social and ecological interventions to complement biomedical advances in the pursuit of global health and sustainability goals. FUNDING: Bill & Melinda Gates Foundation, National Institutes of Health, National Science Foundation, Alfred P. Sloan Foundation, National Institute for Mathematical and Biological Synthesis, Stanford University, and the US Defense Advanced Research Projects Agency.


Assuntos
COVID-19 , Doenças Transmissíveis , Carga Global da Doença , Humanos , Doenças Transmissíveis/epidemiologia , Saúde Global , Fatores Socioeconômicos , Estados Unidos
11.
Elife ; 112022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040013

RESUMO

The global community has adopted ambitious goals to eliminate schistosomiasis as a public health problem, and new tools are needed to achieve them. Mass drug administration programs, for example, have reduced the burden of schistosomiasis, but the identification of hotspots of persistent and reemergent transmission threaten progress toward elimination and underscore the need to couple treatment with interventions that reduce transmission. Recent advances in DNA sequencing technologies make whole-genome sequencing a valuable and increasingly feasible option for population-based studies of complex parasites such as schistosomes. Here, we focus on leveraging genomic data to tailor interventions to distinct social and ecological circumstances. We consider two priority questions that can be addressed by integrating epidemiological, ecological, and genomic information: (1) how often do non-human host species contribute to human schistosome infection? and (2) what is the importance of locally acquired versus imported infections in driving transmission at different stages of elimination? These questions address processes that can undermine control programs, especially those that rely heavily on treatment with praziquantel. Until recently, these questions were difficult to answer with sufficient precision to inform public health decision-making. We review the literature related to these questions and discuss how whole-genome approaches can identify the geographic and taxonomic sources of infection, and how such information can inform context-specific efforts that advance schistosomiasis control efforts and minimize the risk of reemergence.


Assuntos
Parasitos , Esquistossomose , Animais , Genômica , Administração Massiva de Medicamentos , Schistosoma , Esquistossomose/epidemiologia , Esquistossomose/prevenção & controle
12.
Lancet Planet Health ; 6(8): e694-e705, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35932789

RESUMO

As sustainable development practitioners have worked to "ensure healthy lives and promote well-being for all" and "conserve life on land and below water", what progress has been made with win-win interventions that reduce human infectious disease burdens while advancing conservation goals? Using a systematic literature review, we identified 46 proposed solutions, which we then investigated individually using targeted literature reviews. The proposed solutions addressed diverse conservation threats and human infectious diseases, and thus, the proposed interventions varied in scale, costs, and impacts. Some potential solutions had medium-quality to high-quality evidence for previous success in achieving proposed impacts in one or both sectors. However, there were notable evidence gaps within and among solutions, highlighting opportunities for further research and adaptive implementation. Stakeholders seeking win-win interventions can explore this Review and an online database to find and tailor a relevant solution or brainstorm new solutions.


Assuntos
Controle de Doenças Transmissíveis , Desenvolvimento Sustentável , Humanos
13.
Front Public Health ; 10: 892366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875032

RESUMO

Humans live in complex socio-ecological systems where we interact with parasites and pathogens that spend time in abiotic and biotic environmental reservoirs (e.g., water, air, soil, other vertebrate hosts, vectors, intermediate hosts). Through a synthesis of published literature, we reviewed the life cycles and environmental persistence of 150 parasites and pathogens tracked by the World Health Organization's Global Burden of Disease study. We used those data to derive the time spent in each component of a pathogen's life cycle, including total time spent in humans versus all environmental stages. We found that nearly all infectious organisms were "environmentally mediated" to some degree, meaning that they spend time in reservoirs and can be transmitted from those reservoirs to human hosts. Correspondingly, many infectious diseases were primarily controlled through environmental interventions (e.g., vector control, water sanitation), whereas few (14%) were primarily controlled by integrated methods (i.e., combining medical and environmental interventions). Data on critical life history attributes for most of the 150 parasites and pathogens were difficult to find and often uncertain, potentially hampering efforts to predict disease dynamics and model interactions between life cycle time scales and infection control strategies. We hope that this synthetic review and associated database serve as a resource for understanding both common patterns among parasites and pathogens and important variability and uncertainty regarding particular infectious diseases. These insights can be used to improve systems-based approaches for controlling environmentally mediated diseases of humans in an era where the environment is rapidly changing.


Assuntos
Doenças Transmissíveis , Doenças Parasitárias , Doenças Transmissíveis/epidemiologia , Ecossistema , Saúde Global , Humanos , Doenças Parasitárias/epidemiologia , Água
14.
Front Epidemiol ; 2: 932021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38455290

RESUMO

Schistosomiasis is a neglected tropical disease caused by multiple parasitic Schistosoma species, and which impacts over 200 million people globally, mainly in low- and middle-income countries. Genomic surveillance to detect evidence for natural selection in schistosome populations represents an emerging and promising approach to identify and interpret schistosome responses to ongoing control efforts or other environmental factors. Here we review how genomic variation is used to detect selection, how these approaches have been applied to schistosomes, and how future studies to detect selection may be improved. We discuss the theory of genomic analyses to detect selection, identify experimental designs for such analyses, and review studies that have applied these approaches to schistosomes. We then consider the biological characteristics of schistosomes that are expected to respond to selection, particularly those that may be impacted by control programs. Examples include drug resistance, host specificity, and life history traits, and we review our current understanding of specific genes that underlie them in schistosomes. We also discuss how inherent features of schistosome reproduction and demography pose substantial challenges for effective identification of these traits and their genomic bases. We conclude by discussing how genomic surveillance for selection should be designed to improve understanding of schistosome biology, and how the parasite changes in response to selection.

15.
PLoS Negl Trop Dis ; 15(10): e0009806, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610025

RESUMO

BACKGROUND: Infectious disease risk is driven by three interrelated components: exposure, hazard, and vulnerability. For schistosomiasis, exposure occurs through contact with water, which is often tied to daily activities. Water contact, however, does not imply risk unless the environmental hazard of snails and parasites is also present in the water. By increasing reliance on hazardous activities and environments, socio-economic vulnerability can hinder reductions in exposure to a hazard. We aimed to quantify the contributions of exposure, hazard, and vulnerability to the presence and intensity of Schistosoma haematobium re-infection. METHODOLOGY/PRINCIPAL FINDINGS: In 13 villages along the Senegal River, we collected parasitological data from 821 school-aged children, survey data from 411 households where those children resided, and ecological data from all 24 village water access sites. We fit mixed-effects logistic and negative binomial regressions with indices of exposure, hazard, and vulnerability as explanatory variables of Schistosoma haematobium presence and intensity, respectively, controlling for demographic variables. Using multi-model inference to calculate the relative importance of each component of risk, we found that hazard (Æ©wi = 0.95) was the most important component of S. haematobium presence, followed by vulnerability (Æ©wi = 0.91). Exposure (Æ©wi = 1.00) was the most important component of S. haematobium intensity, followed by hazard (Æ©wi = 0.77). Model averaging quantified associations between each infection outcome and indices of exposure, hazard, and vulnerability, revealing a positive association between hazard and infection presence (OR = 1.49, 95% CI 1.12, 1.97), and a positive association between exposure and infection intensity (RR 2.59-3.86, depending on the category; all 95% CIs above 1). CONCLUSIONS/SIGNIFICANCE: Our findings underscore the linkages between social (exposure and vulnerability) and environmental (hazard) processes in the acquisition and accumulation of S. haematobium infection. This approach highlights the importance of implementing both social and environmental interventions to complement mass drug administration.


Assuntos
Reinfecção/parasitologia , Schistosoma haematobium/fisiologia , Esquistossomose Urinária/parasitologia , Vulnerabilidade Social , Adolescente , Animais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Reinfecção/epidemiologia , Reinfecção/psicologia , População Rural/estatística & dados numéricos , Schistosoma haematobium/genética , Schistosoma haematobium/isolamento & purificação , Esquistossomose Urinária/epidemiologia , Esquistossomose Urinária/psicologia , Senegal/epidemiologia , Populações Vulneráveis/estatística & dados numéricos , Água/parasitologia
16.
PLoS Negl Trop Dis ; 15(9): e0009712, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34570777

RESUMO

Schistosome parasites infect more than 200 million people annually, mostly in sub-Saharan Africa, where people may be co-infected with more than one species of the parasite. Infection risk for any single species is determined, in part, by the distribution of its obligate intermediate host snail. As the World Health Organization reprioritizes snail control to reduce the global burden of schistosomiasis, there is renewed importance in knowing when and where to target those efforts, which could vary by schistosome species. This study estimates factors associated with schistosomiasis risk in 16 villages located in the Senegal River Basin, a region hyperendemic for Schistosoma haematobium and S. mansoni. We first analyzed the spatial distributions of the two schistosomes' intermediate host snails (Bulinus spp. and Biomphalaria pfeifferi, respectively) at village water access sites. Then, we separately evaluated the relationships between human S. haematobium and S. mansoni infections and (i) the area of remotely-sensed snail habitat across spatial extents ranging from 1 to 120 m from shorelines, and (ii) water access site size and shape characteristics. We compared the influence of snail habitat across spatial extents because, while snail sampling is traditionally done near shorelines, we hypothesized that snails further from shore also contribute to infection risk. We found that, controlling for demographic variables, human risk for S. haematobium infection was positively correlated with snail habitat when snail habitat was measured over a much greater radius from shore (45 m to 120 m) than usual. S. haematobium risk was also associated with large, open water access sites. However, S. mansoni infection risk was associated with small, sheltered water access sites, and was not positively correlated with snail habitat at any spatial sampling radius. Our findings highlight the need to consider different ecological and environmental factors driving the transmission of each schistosome species in co-endemic landscapes.


Assuntos
Schistosoma haematobium/fisiologia , Schistosoma mansoni/fisiologia , Esquistossomose Urinária/parasitologia , Esquistossomose mansoni/parasitologia , Adolescente , Adulto , Distribuição Animal , Animais , Criança , Reservatórios de Doenças/parasitologia , Ecossistema , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rios/parasitologia , População Rural/estatística & dados numéricos , Schistosoma haematobium/genética , Schistosoma haematobium/isolamento & purificação , Schistosoma mansoni/genética , Schistosoma mansoni/isolamento & purificação , Esquistossomose Urinária/epidemiologia , Esquistossomose Urinária/transmissão , Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/transmissão , Senegal/epidemiologia , Caramujos/parasitologia , Caramujos/fisiologia , Adulto Jovem
17.
BMJ Case Rep ; 14(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103304

RESUMO

Tenosynovitis of the extensor pollicis longus (EPL) is rarely reported in patients without rheumatoid arthritis but may lead to thumb snapping as a consequence of EPL stenosing tenosynovitis.This case presents painful thumb snapping that developed after a wrist trauma and repetitive loading. Ultrasound and MRI were used as diagnostic tools, before surgical release of the EPL in the third extensor compartment was performed. Neither EPL tenosynovitis nor thumb snapping were found at follow-up.


Assuntos
Encarceramento do Tendão , Tenossinovite , Humanos , Encarceramento do Tendão/diagnóstico , Encarceramento do Tendão/diagnóstico por imagem , Tendões/diagnóstico por imagem , Tendões/cirurgia , Tenossinovite/diagnóstico por imagem , Polegar/diagnóstico por imagem , Punho
18.
Infect Dis (Lond) ; 53(9): 678-683, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33939582

RESUMO

OBJECTIVES: Splenectomy is a common surgical procedure, and splenectomized patients have shown to be severely more affected by certain infections than patients with a preserved splenic function. We investigated the risk of COVID-19 infection and subsequent hospitalisation and death in splenectomized patients. METHODS: We conducted a case-control study of all individuals with a microbiologically verified COVID-19 infection in Denmark through December 31, 2020. To each case, we matched three controls on age, sex, and region of residence. We examined the association between previous splenectomy and the risk of COVID-19 infection, hospitalisation, and death using a logistic regression model. RESULTS: We identified 165,623 individuals with a positive COVID-19 test and 493,300 matched controls. Mean age was 38 years. 130 and 422 splenectomies were performed in the COVID-19 positive individuals and controls, respectively. Splenectomized patients did not have a higher risk of COVID-19 infection than non-splenectomized patients (adjusted OR: 0.89; 95% CI: 0.73-1.08). Among COVID-19 positive individuals, splenectomized patients may have an increased risk of hospitalisation or death (adjusted OR for combined endpoint: 1.44; 95% CI: 0.79-2.61). CONCLUSIONS: Splenectomized patients are not at an increased risk of COVID-19 infection, but they may have a higher risk of hospitalisation or death among COVID-19 positive individuals. This may be attributed to higher comorbidity levels.


Assuntos
COVID-19 , Esplenectomia , Adulto , Estudos de Casos e Controles , Hospitalização , Humanos , SARS-CoV-2 , Esplenectomia/efeitos adversos
19.
Infect Dis Poverty ; 10(1): 35, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33745442

RESUMO

BACKGROUND: Water resources development promotes agricultural expansion and food security. But are these benefits offset by increased infectious disease risk? Dam construction on the Senegal River in 1986 was followed by agricultural expansion and increased transmission of human schistosomes. Yet the mechanisms linking these two processes at the individual and household levels remain unclear. We investigated the association between household land use and schistosome infection in children. METHODS: We analyzed cross-sectional household survey data (n = 655) collected in 16 rural villages in August 2016  across demographic, socio-economic and land use dimensions, which were matched to Schistosoma haematobium (n = 1232) and S. mansoni (n = 1222) infection data collected from school-aged children. Mixed effects regression determined the relationship between irrigated area and schistosome infection presence and intensity. RESULTS: Controlling for socio-economic and demographic risk factors, irrigated area cultivated by a household was associated with an increase in the presence of S. haematobium infection (odds ratio [OR] = 1.14; 95% confidence interval [95% CI]: 1.03-1.28) but not S. mansoni infection (OR = 1.02; 95% CI: 0.93-1.11). Associations between infection intensity and irrigated area were positive but imprecise (S. haematobium: rate ratio [RR] = 1.05; 95% CI: 0.98-1.13, S. mansoni: RR = 1.09; 95% CI: 0.89-1.32). CONCLUSIONS: Household engagement in irrigated agriculture increases individual risk of S. haematobium but not S. mansoni infection. Increased contact with irrigated landscapes likely drives exposure, with greater impacts on households relying on agricultural livelihoods.


Assuntos
Irrigação Agrícola , Esquistossomose/epidemiologia , Microbiologia da Água , Adolescente , Animais , Criança , Estudos Transversais , Feminino , Humanos , Masculino , Doenças Parasitárias/epidemiologia , Fatores de Risco , População Rural , Schistosoma , Senegal
20.
Geospat Health ; 15(2)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33461284

RESUMO

Schistosomiasis, or "snail fever", is a parasitic disease affecting over 200 million people worldwide. People become infected when exposed to water containing particular species of freshwater snails. Habitats for such snails can be mapped using lightweight, inexpensive and field-deployable consumer-grade Unmanned Aerial Vehicles (UAVs), also known as drones. Drones can obtain imagery in remote areas with poor satellite imagery. An unexpected outcome of using drones is public engagement. Whereas sampling snails exposes field technicians to infection risk and might disturb locals who are also using the water site, drones are novel and fun to watch, attracting crowds that can be educated about the infection risk.


Assuntos
Doenças Transmissíveis/epidemiologia , Esquistossomose/epidemiologia , Caramujos/parasitologia , Animais , Ecossistema , Humanos , Tecnologia de Sensoriamento Remoto , Imagens de Satélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...