RESUMO
CD38 is a transmembrane glycoprotein that functions as an ectoenzyme and as a receptor. Based on the structural similarity between CD38 and ADP-ribosyl cyclase from Aplysia californica, it was hypothesized that CD38 is expressed as a homodimer on the surface of cells. Indeed, CD38 dimers have been reported, however, the structural requirements for their stabilization on the plasma membrane are unknown. We demonstrate that the majority of CD38 is assembled as noncovalently associated homodimers on the surface of B cells. Analysis of CD38 mutants, expressed in Ba/F3 cells, revealed that truncation of the cytoplasmic region or mutation of a single amino acid within the alpha1-helix of CD38 decreased the stability of the CD38 homodimers when solubilized in detergent. Cells expressing the unstable CD38 homodimers had diminished expression of CD38 on the plasma membrane and the half-lives of these CD38 mutant proteins on the plasma membrane were significantly reduced. Together, these results show that CD38 is expressed as noncovalently associated homodimers on the surface of murine B cells and suggest that appropriate assembly of CD38 homodimers may play an important role in stabilizing CD38 on the plasma membrane of B cells.