Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 21(12): 1977-83, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11742873

RESUMO

Atherosclerosis was studied in apolipoprotein E (apoE) knockout mice expressing human apolipoprotein A-I (apoA-I) or an apoA-I/apolipoprotein A-II (apoA-II) chimera in which the Arg123-Tyr166 central domain of apoA-I was substituted with the Ser12-Ala75 segment of apoA-II. High density lipoprotein (HDL) cholesterol levels were identical in apoA-I and apoA-I/apoA-II mice, but at 4 months, plaques were 2.7-fold larger in the aortic root of the apoA-I/apoA-II mice (P<0.01). The macrophage-to-smooth muscle cell ratio of lesions was 2.1-fold higher in apo-I/apoA-II mice than in apoA-I mice (P<0.01). This was due to a 2.7-fold higher (P<0.001) in vivo macrophage homing in the aortic root of apoA-I/apoA-II mice. Plasma platelet-activating factor acetyl hydrolase activity was lower (P<0.01) in apoA-I/apoA-II mice, resulting in increased oxidative stress, as evidenced by the higher titer of antibodies against oxidized low density lipoprotein (P<0.01). Increased oxidative stress resulted in increased stimulation of ex vivo macrophage adhesion by apoA-I/apoA-II beta-very low density lipoprotein and decreased inhibition of beta-very low density lipoprotein-induced adhesion by HDL from apoA-I/apoA-II mice. The cellular cholesterol efflux capacity of HDL from apoA-I/apoA-II mice was very similar to that of apoA-I mice. Thus, the Arg123-Tyr166 central domain of apoA-I is critical for reducing oxidative stress, macrophage homing, and early atherosclerosis in apoE knockout mice independent of its role in HDL production and cholesterol efflux.


Assuntos
Apolipoproteína A-I/genética , Arteriosclerose/fisiopatologia , HDL-Colesterol/metabolismo , Macrófagos/metabolismo , Animais , Autoanticorpos/análise , Sequência de Bases , Adesão Celular , Quimera , Progressão da Doença , Feminino , Lipoproteínas HDL/sangue , Lipoproteínas LDL/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Estresse Oxidativo/genética
2.
J Biol Chem ; 276(44): 40949-54, 2001 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-11533033

RESUMO

Apolipoprotein (apo) E contains two structural domains, a 22-kDa (amino acids 1-191) N-terminal domain and a 10-kDa (amino acids 223-299) C-terminal domain. To better understand apoE-lipid interactions on lipoprotein surfaces, we determined the thermodynamic parameters for binding of apoE4 and its 22- and 10-kDa fragments to triolein-egg phosphatidylcholine emulsions using a centrifugation assay and titration calorimetry. In both large (120 nm) and small (35 nm) emulsion particles, the binding affinities decreased in the order 10-kDa fragment approximately 34-kDa intact apoE4 > 22-kDa fragment, whereas the maximal binding capacity of intact apoE4 was much larger than those of the 22- and 10-kDa fragments. These results suggest that at maximal binding, the binding behavior of intact apoE4 is different from that of each fragment and that the N-terminal domain of intact apoE4 does not contact lipid. Isothermal titration calorimetry measurements showed that apoE binding to emulsions was an exothermic process. Binding to large particles is enthalpically driven, and binding to small particles is entropically driven. At a low surface concentration of protein, the binding enthalpy of intact apoE4 (-69 kcal/mol) was approximately equal to the sum of the enthalpies for the 22- and 10-kDa fragments, indicating that both the 22- and 10-kDa fragments interact with lipids. In a saturated condition, however, the binding enthalpy of intact apoE4 (-39 kcal/mol) was less exothermic and rather similar to that of each fragment, supporting the hypothesis that only the C-terminal domain of intact apoE4 binds to lipid. We conclude that the N-terminal four-helix bundle can adopt either open or closed conformations, depending upon the surface concentration of emulsion-bound apoE.


Assuntos
Apolipoproteínas E/metabolismo , Metabolismo dos Lipídeos , Apolipoproteínas E/química , Calorimetria , Humanos , Conformação Proteica , Termodinâmica
3.
J Biol Chem ; 276(47): 43801-8, 2001 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-11564739

RESUMO

Scavenger receptor (SR)-BI is the first molecularly defined receptor for high density lipoprotein (HDL) and it can mediate the selective uptake of cholesteryl ester into cells. To elucidate the molecular mechanisms by which SR-BI facilitates lipid uptake, we examined the connection between lipid donor particle binding and lipid uptake using kidney COS-7 cells transiently transfected with SR-BI. We systematically compared the uptake of [(3)H]cholesteryl oleoyl ether (CE) and [(14)C]sphingomyelin (SM) from apolipoprotein (apo) A-I-containing reconstituted HDL (rHDL) particles and apo-free lipid donor particles. Although both types of lipid donor could bind to SR-BI, only apo-containing lipid donors exhibited preferential delivery of CE over SM (i.e. nonstoichiometric lipid uptake). In contrast, apo-free lipid donor particles (phospholipid unilamellar vesicles, lipid emulsion particles) gave rise to stoichiometric lipid uptake due to interaction with SR-BI. This apparent whole particle uptake was not due to endocytosis, but rather fusion of the lipid components of the lipid donor with the cell plasma membrane; this process is perhaps mediated by a fusogenic motif in the extracellular domain of SR-BI. The interaction of apoA-I with SR-BI not only prevents fusion of the lipid donor with the plasma membrane but also allows the optimal selective lipid uptake. A comparison of rHDL particles containing apoA-I and apoE-3 showed that while both particles bound equally well to SR-BI, the apoA-I particle gave approximately 2-fold greater CE selective uptake. Catabolism of all major HDL lipids can occur via SR-BI with the relative selective uptake rate constants for CE, free cholesterol, triglycerides (triolein), and phosphatidylcholine being 1, 1.6, 0.7, and 0.2, respectively. It follows that a putative nonpolar channel created by SR-BI between the bound HDL particle and the cell plasma membrane is better able to accommodate the uptake of neutral lipids (e.g. cholesterol) relative to polar phospholipids.


Assuntos
Antígenos CD36/fisiologia , Metabolismo dos Lipídeos , Proteínas de Membrana , Receptores Imunológicos , Receptores de Lipoproteínas , Animais , Células COS , HDL-Colesterol/metabolismo , Humanos , Receptores Depuradores , Receptores Depuradores Classe B
4.
J Biol Chem ; 276(42): 39138-44, 2001 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-11500500

RESUMO

Defective binding of apolipoprotein E (apoE) to heparan sulfate proteoglycans (HSPGs) is associated with increased risk of atherosclerosis due to inefficient clearance of lipoprotein remnants by the liver. The interaction of apoE with HSPGs has also been implicated in the pathogenesis of Alzheimer's disease and may play a role in neuronal repair. To identify which residues in the heparin-binding site of apoE and which structural elements of heparan sulfate interact, we used a variety of approaches, including glycosaminoglycan specificity assays, (13)C nuclear magnetic resonance, and heparin affinity chromatography. The formation of the high affinity complex required Arg-142, Lys-143, Arg-145, Lys-146, and Arg-147 from apoE and N- and 6-O-sulfo groups of the glucosamine units from the heparin fragment. As shown by molecular modeling, using a high affinity binding octasaccharide fragment of heparin, these findings are consistent with a binding mode in which five saccharide residues of fully sulfated heparan sulfate lie in a shallow groove of the alpha-helix that contains the HSPG-binding site (helix 4 of the four-helix bundle of the 22-kDa fragment). This groove is lined with residues Arg-136, Ser-139, His-140, Arg-142, Lys-143, Arg-145, Lys-146, and Arg-147. In the model, all of these residues make direct contact with either the 2-O-sulfo groups of the iduronic acid monosaccharides or the N- and 6-O-sulfo groups of the glucosamine sulfate monosaccharides. This model indicates that apoE has an HSPG-binding site highly complementary to heparan sulfate rich in N- and O-sulfo groups such as that found in the liver and the brain.


Assuntos
Apolipoproteínas E/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Animais , Apolipoproteínas E/química , Arginina/química , Sítios de Ligação , Biotinilação , Encéfalo/metabolismo , Bovinos , Cromatografia de Afinidade , Relação Dose-Resposta a Droga , Glucosamina/química , Proteoglicanas de Heparan Sulfato/química , Heparina/química , Heparina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Fígado/metabolismo , Lisina/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Polissacarídeos/metabolismo , Ligação Proteica , Serina/química , Estreptavidina/química , Ressonância de Plasmônio de Superfície , Fatores de Tempo
5.
J Lipid Res ; 42(7): 1096-104, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11441137

RESUMO

We have recently shown that a class A amphipathic peptide 5F with increased amphipathicity protected mice from diet-induced atherosclerosis (Garber et al. J. Lipid Res. 2001. 42: 545-552). We have now examined the effects of increasing the hydrophobicity of a series of homologous class A amphipathic peptides, including 5F, on physical and functional properties related to atherosclerosis inhibition by systematically replacing existing nonpolar amino acids with phenylalanine. The peptides, based on the sequence Ac-D-W-L-K-A-F-Y-D-K-V-A-E-K-L-K-E-A-F-NH(2) (Ac-18A-NH(2) or 2F) were: 3F(3)(Ac-F(3)18A-NH(2)), 3F(14)(Ac-F(14)18A-NH(2)), 4F(Ac-F(3,14)18A-NH(2)), 5F(Ac-F(11,14,17) 18A-NH(2)), 6F(Ac-F(10,11,14,17)18A-NH(2)), and 7F(Ac-F(3,10,11,14,17) 18A-NH(2)). Measurements of aqueous solubility, HPLC retention time, exclusion pressure for penetration into an egg phosphatidylcholine (EPC) monolayer, and rates of EPC solubilization revealed an abrupt increase in the hydrophobicity between peptides 4F and 5F; this was accompanied by increased ability to associate with phospholipids. The peptides 6F and 7F were less effective, indicating a limit to increased hydrophobicity for promoting lipid interaction in these peptides. Despite this marked increase in lipid affinity, these peptides were less effective than apoA-I in activating the plasma enzyme, lecithin:cholesterol acyltransferase, with 5F activating LCAT the best (80% of apoA-I). Peptides 4F, 5F, and 6F were equally potent in inhibiting LDL-induced monocyte chemotactic activity. These studies suggest that an appropriate balance between peptide-peptide and peptide-lipid interactions is required for optimal biological activity of amphipathic peptides. These studies provide a rationale for the design of small apoA-I-mimetics with increased potency for atherosclerosis inhibition.


Assuntos
Apolipoproteína A-I/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Fosfatidilcolina-Esterol O-Aciltransferase/efeitos dos fármacos , Fosfolipídeos/química , Animais , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Sítios de Ligação/fisiologia , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Colesterol/metabolismo , LDL-Colesterol/farmacologia , Dicroísmo Circular , Ativação Enzimática/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Monócitos/fisiologia , Peptídeos/análise , Peptídeos/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , Solubilidade
6.
J Lipid Res ; 42(6): 894-901, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11369796

RESUMO

To understand the molecular basis for the differences in receptor-binding activity of the three common human apolipoprotein E (apoE) isoforms, we characterized the microenvironments of their LDL receptor (LDLR)-binding regions (residues 136;-150). When present in dimyristoyl phosphatidylcholine (DMPC) complexes, the 22-kDa amino-terminal fragments (residues 1;-191) of apoE3 and apoE4 bound to the LDLR with approximately 100-fold greater affinity than the 22-kDa fragment of apoE2. The pK(a) values of lysines (K) at positions 143 and 146 in the LDLR-binding region in DMPC-associated 22-kDa apoE fragments were 9.4 and 9.9 in apoE2, 9.5 and 9.2 in apoE3, and 9.9 and 9.4 in apoE4, respectively. The increased pK(a) of K146 in apoE2 relative to apoE3 arises from a reduction in the positive electrostatic potential in its microenvironment. This effect occurs because C158 in apoE2, unlike R158 in apoE3, rearranges the intrahelical salt bridges along the polar face of the amphipathic alpha-helix spanning the LDLR-binding region, reducing the effect of the R150 positive charge on K146 and concomitantly decreasing LDLR-binding affinity. The C112R mutation in apoE4 that differentiates it from apoE3 did not perturb the pK(a) of K146 significantly, but it increased the pK(a) of K143 in apoE4 by 0.4 pH unit. This change did not alter LDLR-binding affinity. Therefore, maintaining the appropriate positive charge at the C-terminal end of the receptor-binding region is particularly critical for effective interaction with acidic residues on the LDLR.


Assuntos
Apolipoproteínas E/química , Apolipoproteínas E/genética , Polimorfismo Genético , Receptores de LDL/metabolismo , Aminoácidos/química , Sítios de Ligação , Cisteamina/química , Dimiristoilfosfatidilcolina/química , Ferricianetos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Lisina/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Ligação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína
7.
Biochemistry ; 39(38): 11657-66, 2000 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-10995233

RESUMO

Denaturation by guanidine-HCl, urea, or heating was performed on the common isoforms of human apolipoprotein (apo) E (apoE2, apoE3, and apoE4) and their 22-kDa and 10-kDa fragments in order to investigate the effects of the cysteine/arginine interchanges at residues 112 and 158. Previous physical characterization of apoE3 established that apoE contains two domains, the 10-kDa carboxyl-terminal and 22-kDa amino-terminal domains, which unfold independently and exhibit large differences in stability. However, the physical properties of apoE2, apoE3, and apoE4 have not been compared before. Analysis by circular dichroism showed that the different isoforms have identical alpha-helical contents and guanidine-HCl denaturation confirmed that the two domains unfold independently in all three isoforms. However, guanidine-HCl, urea, and thermal denaturation showed differences in stability among the 22-kDa amino-terminal fragments of the apoE isoforms (apoE4 < apoE3 < apoE2). Furthermore, guanidine-HCl denaturation monitored by circular dichroism and fluorescence suggested the presence of a folding intermediate in apoE, most prominently in apoE4. Thus, these studies reveal that the major isoforms of apoE, which are associated with different pathological consequences, exhibit significant differences in stability.


Assuntos
Apolipoproteínas E/química , Fragmentos de Peptídeos/química , Apolipoproteínas E/metabolismo , Catálise , Guanidina/química , Temperatura Alta , Humanos , Hidrólise , Peso Molecular , Fragmentos de Peptídeos/metabolismo , Desnaturação Proteica , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Termodinâmica , Trombina/metabolismo , Ureia/química
8.
J Biol Chem ; 275(44): 34459-64, 2000 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-10921925

RESUMO

Lysines in apolipoprotein (apo) E are key factors in the binding of apoE to the low density lipoprotein receptor, and high affinity binding requires that apoE be associated with lipid. To gain insight into this effect, we examined the microenvironments of the eight lysines in the 22-kDa fragment of apoE3 (residues 1-191) in the lipid-free and lipid-associated states. As shown by (1)H,(13)C heteronuclear single quantum coherence nuclear magnetic resonance, lysine resonances in the lipid-free fragment were poorly resolved over a wide pH range, whereas in apoE3.dimyristoyl phosphatidylcholine (DMPC) discs, the lysine microenvironments and protein conformation were significantly altered. Sequence-specific assignments of the lysine resonances in the spectrum of the lipidated 22-kDa fragment were made. In the lipid-free protein, six lysines could be resolved, and all had pK(a) values above 10. In apoE3.DMPC complexes, however, all eight lysines were resolved, and the pK(a) values were 9.2-11.1. Lys-143 and Lys-146, both in the receptor binding region in helix 4, had unusually low pK(a) values of 9.5 and 9.2, respectively, likely as a result of local increases in positive electrostatic potential with lipid association. Shift reagent experiments with potassium ferricyanide showed that Lys-143 and Lys-146 were much more accessible to the ferricyanide anion in the apoE3.DMPC complex than in the lipid-free state. The angle of the nonpolar face of helix 4 is smaller than the angles of helices 1, 2, and 3, suggesting that helix 4 cannot penetrate as deeply into the DMPC acyl chains at the edge of the complex and that its polar face protrudes from the edge of the disc. This increased exposure and the greater positive electrostatic potential created by interaction with DMPC may explain why lipid association is required for high affinity binding of apoE to the low density lipoprotein receptor.


Assuntos
Apolipoproteínas E/metabolismo , Metabolismo dos Lipídeos , Lisina/metabolismo , Apolipoproteínas E/química , Apolipoproteínas E/genética , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica
9.
J Lipid Res ; 41(7): 1087-95, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10884290

RESUMO

Conserved lysines and arginines within amino acids 140-150 of apolipoprotein (apo) E are crucial for the interaction between apoE and the low density lipoprotein receptor (LDLR). To explore the roles of amphipathic alpha-helix and basic residue organization in the binding process, we performed site-directed mutagenesis on the 22-kDa fragment of apoE (amino acids 1-191). Exchange of lysine and arginine at positions 143, 146, and 147 demonstrated that a positive charge rather than a specific basic residue is required at these positions. Consistent with this finding, substitution of neutral amino acids for the lysines at positions 143 and 146 reduced the binding affinity to about 30% of the wild-type value. This reduction corresponds to a decrease in free energy of binding of approximately 600 cal/mol, consistent with the elimination of a hydrogen-bonded ion pair (salt bridge) between a lysine on apoE and an acidic residue on the LDLR. Binding activity was similarly reduced when K143 and K146 were both mutated to arginine (K143R + K146R), indicating that more than the side-chain positive charge can be important.Exchanging lysines and leucines indicated that the amphipathic alpha-helical structure of amino acids 140-150 is critical for normal binding to the low density lipoprotein receptor.


Assuntos
Apolipoproteínas E/metabolismo , Receptores de LDL/metabolismo , Sequência de Aminoácidos , Diamino Aminoácidos/química , Apolipoproteínas E/química , Apolipoproteínas E/genética , Dicroísmo Circular , Sequência Conservada , Escherichia coli/genética , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
J Biol Chem ; 275(25): 18897-904, 2000 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-10858447

RESUMO

Scavenger receptor, class B, type I (SR-BI) mediates the selective uptake of high density lipoprotein (HDL) cholesteryl ester without the uptake and degradation of the particle. In transfected cells SR-BI recognizes HDL, low density lipoprotein (LDL) and modified LDL, protein-free lipid vesicles containing anionic phospholipids, and recombinant lipoproteins containing apolipoprotein (apo) A-I, apoA-II, apoE, or apoCIII. The molecular basis for the recognition of such diverse ligands by SR-BI is unknown. We have used direct binding analysis and chemical cross-linking to examine the interaction of murine (m) SR-BI with apoA-I, the major protein of HDL. The results show that apoA-I in apoA-I/palmitoyl-oleoylphosphatidylcholine discs, HDL(3), or in a lipid-free state binds to mSR-BI with high affinity (K(d) congruent with 5-8 microgram/ml). ApoA-I in each of these forms was efficiently cross-linked to cell surface mSR-BI, indicating that direct protein-protein contacts are the predominant feature that drives the interaction between HDL and mSR-BI. When complexed with dimyristoylphosphatidylcholine, the N-terminal and C-terminal CNBr fragments of apoA-I each bound to SR-BI in a saturable, high affinity manner, and each cross-linked efficiently to mSR-BI. Thus, mSR-BI recognizes multiple sites in apoA-I. A model class A amphipathic alpha-helix, 37pA, also showed high affinity binding and cross-linking to mSR-BI. These studies identify the amphipathic alpha-helix as a recognition motif for SR-BI and lead to the hypothesis that mSR-BI interacts with HDL via the amphipathic alpha-helical repeat units of apoA-I. This hypothesis explains the interaction of SR-BI with a wide variety of apolipoproteins via a specific secondary structure, the class A amphipathic alpha-helix, that is a common structural motif in the apolipoproteins of HDL, as well as LDL.


Assuntos
Apolipoproteína A-I/metabolismo , Antígenos CD36/metabolismo , Proteínas de Membrana , Receptores Imunológicos , Receptores de Lipoproteínas , Motivos de Aminoácidos , Animais , Sítios de Ligação , Antígenos CD36/química , Células COS , Reagentes de Ligações Cruzadas , Humanos , Ligação Proteica , Receptores Depuradores , Receptores Depuradores Classe A , Receptores Depuradores Classe B
11.
Biochemistry ; 39(12): 3231-9, 2000 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-10727214

RESUMO

Procollagen C-proteinase-2 (pCP-2, mTld) is derived from the longest splicing variant of the gene encoding bone morphogenetic protein 1 (BMP-1). The variants have identical amino terminal signal peptides, prodomains and astacin-like protease domains. However, they differ in the length of their carboxy terminal part, which in pCP-2 has the composition CUB1, CUB2, EGF-like1, CUB3, EGF-like2, CUB4, CUB5, and C-tail. In the shorter form, pCP-1 (i.e., BMP-1), the sequence ends after the CUB3-domain. Using a combination of mutagenesis and structural approaches, we have investigated the structure and function of subfragments of pCP-2. The full-length latent recombinant enzyme and its N-terminally truncated form lacking the prodomain were tested for their enzymic activity. The intact protein showed only partial processing of procollagen type I, whereas the truncated form expressed enzymic activity indistinguishable from its native counterpart purified from chick embryo tendons. These results clearly demonstrated that the prodomain is required for the latency of the enzyme but not for its correct folding. Limited proteolysis of the recombinant protein with alpha-chymotrypsin produced four discrete fragments revealing the location of cleavage sites between the repetitive CUB/EGF domains. The results provide evidence that the CUB sequences form independently folded modules that are stabilized by two pairs of internal disulfide bridges. The modules are linked to each other by more flexible, hinge-like peptides. Solid-phase binding assays with isolated CUB domains and immobilized procollagen type I demonstrated that the first three but not the last two CUB domains specifically bound to the substrate. To define putative sites for CUB-CUB or CUB-substrate interactions, we generated molecular models for pCP-2 CUB domains. The models were obtained using as a template the structure of CUB domain in zona pellucida adhesion protein PSP-I/PSP-II from porcine sperm. The predicted conformations for homology models were, subsequently, confirmed by circular dichroism spectroscopy of polypeptide domains isolated following limited proteolysis with alpha-chymotrypsin.


Assuntos
Proteínas Morfogenéticas Ósseas/química , Proteínas Morfogenéticas Ósseas/metabolismo , Quimotripsina/metabolismo , Simulação por Computador , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Pró-Colágeno/metabolismo , Sequência de Aminoácidos , Animais , Proteína Morfogenética Óssea 1 , Proteínas Morfogenéticas Ósseas/genética , Linhagem Celular , Embrião de Galinha , Dicroísmo Circular , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/metabolismo , Humanos , Hidrólise , Metaloendopeptidases/genética , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Pró-Colágeno/genética , Ligação Proteica/genética , Conformação Proteica , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Metaloproteases Semelhantes a Toloide
12.
J Biol Chem ; 274(29): 20344-50, 1999 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-10400657

RESUMO

Despite extensive studies and characterizations of the high density lipoprotein-cholesteryl ester (HDL-CE)-selective uptake pathway, the mechanisms by which the hydrophobic CE molecules are transferred from the HDL particle to the plasma membrane have remained elusive, until the discovery that scavenger receptor BI (SR-BI) plays an important role. To elucidate the molecular mechanism, we examined the quantitative relationships between the binding of HDL and the selective uptake of its CE in the murine adrenal Y1-BS1 cell line. A comparison of concentration dependences shows that half-maximal high affinity cell association of HDL occurs at 8.7 +/- 4.7 micrograms/ml and the Km of HDL-CE-selective uptake is 4.5 +/- 1.5 micrograms/ml. These values are similar, and there is a very high correlation between these two processes (r2 = 0.98), suggesting that they are linked. An examination of lipid uptake from reconstituted HDL particles of defined composition and size shows that there is a non-stoichiometric uptake of HDL lipid components, with CE being preferred over the major HDL phospholipids, phosphatidylcholine and sphingomyelin. Comparison of the rates of selective uptake of different classes of phospholipid in this system gives the ranking: phosphatidylserine > phosphatidylcholine approximately phosphatidylinositol > sphingomyelin. The rate of CE-selective uptake from donor particles is proportional to the amount of CE initially present in the particles, suggesting a mechanism in which CE moves down its concentration gradient from HDL particles docked on SR-BI into the cell plasma membrane. The activation energy for CE uptake from either HDL3 or reconstituted HDL is about 9 kcal/mol, indicating that HDL-CE uptake occurs via a non-aqueous pathway. HDL binding to SR-BI allows access of CE molecules to a "channel" formed by the receptor from which water is excluded and along which HDL-CE molecules move down their concentration gradient into the cell plasma membrane.


Assuntos
Glândulas Suprarrenais/metabolismo , Ésteres do Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Proteínas de Membrana , Receptores Imunológicos/metabolismo , Receptores de Lipoproteínas , Glândulas Suprarrenais/citologia , Antígenos CD36 , Humanos , Fosfolipídeos/metabolismo , Ligação Proteica , Receptores Depuradores , Receptores Depuradores Classe B
13.
Biochim Biophys Acta ; 1430(2): 302-12, 1999 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-10082958

RESUMO

Transfer of apolipoprotein (apo) molecules between lipoprotein particles is an important factor in modulating the metabolism of the particles. Although the phenomenon is well established, the kinetics and molecular mechanism of passive apo exchange/transfer have not been defined in detail. In this study, the kinetic parameters governing the movement of radiolabeled apoC molecules from human very low density lipoprotein (VLDL) to high density lipoprotein (HDL3) particles were measured using a manganese phosphate precipitation assay to rapidly separate the two types of lipoprotein particles. In the case of VLDL labeled with human [14C]apoCIII1, a large fraction of the apoCIII1 transfers to HDL3 within 1 minute of mixing the two lipoproteins at either 4 degrees or 37 degrees C. As the diameter of the VLDL donor particles is decreased from 42-59 to 23-25 nm, the size of this rapidly transferring apoCIII1 pool increases from about 50% to 85%. There is also a pool of apoCIII1 existing on the donor VLDL particles that transfers more slowly. This slow transfer follows a monoexponential rate equation; for 35-40 nm donor VLDL particles the pool size is approximately 20% and the t1/2 is approximately 3 h. The flux of apoCIII molecules between VLDL and HDL3 is bidirectional and all of the apoCIII seems to be available for exchange so that equilibrium is attained. It is likely that the two kinetic pools of apoCIII are related to conformational variations of individual apo molecules on the surface of VLDL particles. The rate of slow transfer of apoCIII1 from donor VLDL (35-40 nm) to acceptor HDL3 is unaffected by an increase in the acceptor to donor ratio, indicating that the transfer is not dependent on collisions between donor and acceptor particles. Consistent with this, apoCIII1 molecules can transfer from donor VLDL to acceptor HDL3 particles across a 50 kDa molecular mass cutoff semipermeable membrane separating the lipoprotein particles. These results indicate that apoC molecules transfer between VLDL and HDL3 particles by an aqueous diffusion mechanism.


Assuntos
Apolipoproteínas C/química , Lipoproteínas VLDL/química , Apolipoproteína C-III , Radioisótopos de Carbono , Diálise , Difusão , Humanos , Cinética , Lipoproteínas HDL/química , Modelos Químicos , Tamanho da Partícula
14.
J Biol Chem ; 274(4): 2021-8, 1999 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-9890960

RESUMO

Lipid-free apolipoprotein (apo) A-I contributes to the reverse transport of cholesterol from the periphery to the liver by solubilizing plasma membrane phospholipid and cholesterol. The features of the apolipoprotein required for this process are not understood and are addressed in the current study. Membrane microsolubilization of human fibroblasts is not specific for apo A-I; unlipidated apos A-II, C, and E incubated with the fibroblast monolayers at a saturating concentration of 50 micrograms/ml are all able to release cholesterol and phospholipid similarly. To determine the properties of the apolipoprotein that drive the process, apo A-I peptides spanning the entire sequence of the protein were utilized; the peptides correspond to the 11- and 22-residue amphipathic alpha-helical segments, as well as adjacent combinations of the helices. Of the 20 helical peptides examined, only peptides representing the N-and C-terminal portions of the protein had the ability to solubilize phospholipid and cholesterol. Cholesterol efflux to the most effective peptides, 44-65 and 209-241, was approximately 50 and 70%, respectively, of that to intact apo A-I. Deletion mutants of apo E and apo A-I were constructed that have reduced lipid binding affinities as compared with the intact molecule. The proteins, apo A-I (Delta222-243), apo A-I (Delta190-243), apo E3 (Delta192-299) and apo E4 (Delta192-299) all exhibited a decreased ability to remove cellular cholesterol and phospholipid. These decreases correlated with the reduced ability of these proteins to penetrate into a phospholipid monomolecular film. Overall, the results indicate that insertion of amphipathic alpha-helices between the plasma membrane phospholipid molecules is a required step in the mechanism of apolipoprotein-mediated cellular lipid efflux. Therefore the lipid binding ability of the apolipoprotein is critical for efficient membrane microsolubilization.


Assuntos
Apolipoproteínas/metabolismo , Colesterol/metabolismo , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Modelos Biológicos , Solubilidade
15.
J Lipid Res ; 39(10): 1918-28, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9788238

RESUMO

High density lipoprotein (HDL) is able to remove unesterified cholesterol from peripheral cells in the process of reverse cholesterol transport by an aqueous diffusion mechanism as well as by an apolipoprotein (apo)-mediated process. The aqueous diffusion mechanism is understood but the molecular mechanism of lipid-poor pre-beta-HDL-(apo-) mediated cholesterol removal is not known. Measurements of the initial rates of efflux of unesterified cholesterol and phospholipid from human fibroblasts to lipid-free, human apoA-I showed that both lipids are released from the cells during a 10-min incubation with apoA-I. The concentration-dependence of efflux of the lipids is the same (Km = 0.4 and 0.6 microg apoA-I/ml for cholesterol and phospholipid flux, respectively), suggesting a membrane microsolubilization process. A finite pool of about 1% of the plasma membrane cholesterol is accessible for release by solubilization; the limited size of this cholesterol pool is not due to a lack of availability of apoA-I, but rather to the restricted amount of phospholipid that is removed from the plasma membrane. Plasma membrane domains may be involved in membrane microsolubilization, but caveolar cholesterol seems not to be specifically accessed in this process. Membrane microsolubilization is the process by which pre-beta1-HDL removes cell cholesterol in the first step of reverse cholesterol transport. When apoA-I is present in the extracellular space, the relative contributions of cholesterol efflux by membrane microsolubilization and by aqueous diffusion are determined by the degree of lipidation of the apoA-I molecules.


Assuntos
Apolipoproteína A-I/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Membrana Celular/ultraestrutura , Fibroblastos/metabolismo , Humanos , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Solubilidade
16.
J Lipid Res ; 39(10): 2065-75, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9788253

RESUMO

African green monkeys fed fat-specific diets served as a model to investigate the effect of phospholipid acyl chain modification on high density lipoprotein (HDL)-mediated cellular cholesterol efflux. Diets enriched in saturated, monounsaturated, n-6 polyunsaturated, or n-3 polyunsaturated fats were provided during both low cholesterol and cholesterol-enriched stages; sera and HDL3 samples were obtained at specific points during the treatment period. Analysis of the HDL phospholipid composition revealed significant acyl chain modification, consistent with the respective fat-specific diet. Cholesterol efflux from mouse L-cell fibroblasts to HDL3 isolated from the specific diet groups was measured and revealed no differences in the abilities of the particles to accept cellular cholesterol; determination of the bidirectional flux of cholesterol between the cells and HDL3 species further demonstrated no effect of phospholipid acyl chain modification on this process. The effects of dietary modification of phospholipid acyl chains on cellular cholesterol efflux were directly examined by isolating the HDL phospholipid and combining it with human apolipoprotein A-I to form well-defined reconstituted HDL particles. These complexes did not display any differences with respect to their ability to stimulate cellular cholesterol efflux. Incubations with 5% sera further confirmed that the fat-specific diets do not influence cholesterol efflux. These results suggest that the established influences of specific dietary fats on the progression of atherosclerosis are due to effects on cholesterol metabolism other than the efflux of cellular cholesterol in the first step of reverse cholesterol transport.


Assuntos
Colesterol/metabolismo , Gorduras na Dieta/administração & dosagem , Lipoproteínas HDL/sangue , Fosfolipídeos/sangue , Animais , Apolipoproteína A-I/metabolismo , Chlorocebus aethiops , Colesterol/sangue , Colesterol na Dieta/administração & dosagem , Gorduras Insaturadas na Dieta/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6 , Ácidos Graxos Insaturados/administração & dosagem , Fibroblastos/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL3 , Camundongos
17.
Biochemistry ; 37(37): 12867-74, 1998 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-9737865

RESUMO

The plasma low-density lipoprotein (LDL) profile in coronary artery disease patients is characterized by a predominance of small, dense LDL. Small, dense LDL exhibit both high susceptibility to oxidation and low binding affinity for the LDL receptor, suggesting that these particles may be of elevated atherogenic potential. Here we examine whether the variation in biological function is due to differences in apo B-100 conformation that alter the interaction with the cellular LDL receptor. The microenvironments (pKa) of Lys residues in apo B-100 in small, dense, intermediate, and light human LDL subspecies have been compared by 13C NMR, and the net surface charge of these particles has been characterized. Relative to the total LDL fraction, small, dense, and light LDL subspecies have a decreased number of pKa 8.9 Lys, while intermediate density LDL has a consistently higher number of pKa 8.9 Lys. It follows that differences in protein conformation, as reflected in the Lys microenvironments, exist in the different LDL subspecies. Electrophoretic mobility measurements revealed that the light LDL subfractions exhibit a surface charge at pH 8.6 that is from -26 to -34e more negative than the intermediate density LDL subfraction. For the small, dense LDL particles the increments in negative charge range from -7 to -17e relative to the intermediate density LDL subfraction. These results suggest that differences in the conformation of apo B-100 and surface charge between LDL subspecies are major determinants of their catabolic fate. The lower number of pKa 8.9 Lys leads to a reduction in binding of small, dense, and light LDL to the cellular LDL receptor and prolongs their plasma residence time, thereby elevating the atherogenicity of these particles. These data support the proposal that the intermediate LDL subspecies constitute the optimal ligand for the LDL receptor among human LDL particle subpopulations.


Assuntos
Apolipoproteínas B/química , Lipoproteínas LDL/química , Conformação Proteica , Receptores de LDL/química , Apolipoproteína B-100 , Apolipoproteínas B/sangue , Apolipoproteínas B/metabolismo , Fracionamento Químico , Dicroísmo Circular , Eletroforese em Gel de Ágar , Humanos , Lipoproteínas LDL/sangue , Lipoproteínas LDL/metabolismo , Espectroscopia de Ressonância Magnética , Tamanho da Partícula , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Fosfolipídeos/fisiologia , Ligação Proteica , Receptores de LDL/sangue , Receptores de LDL/metabolismo , Propriedades de Superfície
18.
Atherosclerosis ; 137 Suppl: S13-7, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9694536

RESUMO

The participation of HDL in the reverse cholesterol transport (RCT) from peripheral cells to the liver is critical for the antiatherogenic properties of this lipoprotein. Experimental results showing that efflux of cholesterol from cells growing in culture is mediated by HDL and lipoprotein particles containing apo A-I, in particular, support this conclusion. A bidirectional flux of unesterified cholesterol molecules between the plasma membrane of cells and HDL particles in the extracellular medium occurs. Net efflux of cholesterol mass from the cells involves passive diffusion of cholesterol molecules through the aqueous phase and down their concentration gradient between the membrane and HDL; the concentration gradient is maintained by LCAT-mediated esterification of cholesterol molecules in the HDL particles. Fully lipidated apo A-I is important in promoting this aqueous diffusion mechanism because it: (1) acts as a cofactor for LCAT; and (2) solubilizes phospholipid into small HDL-sized particles that are efficient at absorbing cholesterol molecules diffusing away from the cell surface. Apo A-I also exists in an incompletely lipidated state in plasma. Apo A-I molecules in this state are able to solubilize phospholipid and cholesterol from the plasma membrane of cells. This membrane-microsolubilization process is enhanced by enrichment of the plasma membrane with cholesterol and is the mechanism by which pre-beta-HDL particles in the extracellular medium remove cholesterol and phospholipid from cells. The relative contributions in vivo of the aqueous diffusion and membrane-microsolubilization mechanisms of apo A-I-mediated cell cholesterol efflux are not predicted readily from cell culture experiments. Confounding issues are the variations with cell type and the dependence on the degree of cholesterol loading of the cell plasma membrane.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/fisiologia , Animais , Apolipoproteína A-I/farmacologia , Membrana Celular/efeitos dos fármacos , Difusão , Humanos , Camundongos , Solubilidade
19.
Biochemistry ; 37(28): 10313-24, 1998 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-9665740

RESUMO

In mature human apolipoprotein A-I (apo A-I), the amino acid residues 1-43 are encoded by exon 3, whereas residues 44-243 are encoded by exon 4 of the apo A-I gene. The region encoded by exon 4 of the apo A-I gene contains 10 tandem amphipathic alpha-helixes; their location and the class to which they belong are as follows: helix 1 (44-65, class A1), helix 2 (66-87, class A1), helix 3 (88-98, class Y), helix 4 (99-120, class Y), helix 5 (121-142, class A1), helix 6 (143-164, class A1), helix 7 (165-186, class A1), helix 8 (187-208, class A1), helix 9 (209-219, class Y), and helix 10 (220-241, class Y). To examine the effects of multiple tandem amphipathic helixes compared to individual helixes of apo A-I on lipid association, we have studied lipid-associating properties of the following peptides: Ac-44-87-NH2 (peptide 1-2), Ac-66-98-NH2 (peptide 2-3), Ac-66-120-NH2 (peptide 2-3-4), Ac-88-120-NH2 (peptide 3-4), Ac-99-142-NH2 (peptide 4-5), Ac-121-164-NH2 (peptide 5-6), Ac-143-186-NH2 (peptide 6-7), Ac-165-208-NH2 (peptide 7-8), Ac-187-219-NH2 (peptide 8-9), and Ac-209-241-NH2 (peptide 9-10). To study lipid-associating properties of the region encoded by exon 3 of the apo A-I gene, 1-33-NH2 (peptide G) has also been studied. The results of the present study indicate that, among the peptides studied, peptides 1-2 and 9-10 possess significantly higher lipid affinity than the other peptides, with peptide 9-10 having higher lipid affinity than peptide 1-2, as evidenced by (i) higher helical content in the presence of 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), (ii) faster rate of association with DMPC multilamellar vesicles (MLV), (iii) greater reduction in the enthalpy of gel to liquid-crystalline phase transition of DMPC MLV, (iv) higher exclusion pressure from an egg yolk phosphatidylcholine monolayer, and (v) higher partitioning into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine MLV. A comparison of the free energies of lipid association (DeltaG) of the peptides studied here with those studied previously by us [Palgunachari, M. N. , et al. (1996) Arterioscler. Thromb. Vasc. Biol. 16, 328-338] indicates that, except for the peptides 4-5 and 5-6, other peptides possess higher lipid affinities compared to constituent helixes. However, the lipid affinities of the peptides studied here are neither higher than nor equal to the sum of the lipid affinities of the constituent helixes. This indicates the absence of cooperativity among the adjacent amphipathic helical domains of apo A-I for lipid association. As indicated by DeltaG, the lipid affinity of peptide 4-5 is higher than peptide 5 but lower than peptide 4; the lipid affinity of peptide 5-6 is lower than both peptides 5 and 6. Implications of these results for the structure and function of apo A-I are discussed.


Assuntos
Apolipoproteína A-I/química , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína , Apolipoproteína A-I/síntese química , Apolipoproteína A-I/ultraestrutura , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Dimiristoilfosfatidilcolina/química , Humanos , Luz , Lipossomos/química , Lipídeos de Membrana/química , Microscopia Eletrônica , Fragmentos de Peptídeos/síntese química , Fosfatidilcolinas/química , Espalhamento de Radiação
20.
Arterioscler Thromb Vasc Biol ; 17(11): 2576-88, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9409230

RESUMO

The effects of marine omega-3 polyunsaturated fatty acids (FAs) and antioxidants on the oxidative modification of LDL were studied in a randomized, double-blind, placebo-controlled trial. Male smokers (n = 41) with combined hyperlipidemia were allocated to one of four groups receiving supplementation with omega-3 FAs (5 g eicosapentaenoic acid and docosahexaenoic acid per day), antioxidants (75 mg vitamin E, 150 mg vitamin C, 15 mg beta-carotene, and 30 mg coenzyme Q10 per day), both omega-3 FAs and antioxidants, or control oils. LDL and human mononuclear cells were isolated from the patients at baseline and after 6 weeks of supplementation. LDL was subjected to cell-mediated oxidation by the patients' own mononuclear cells, as well as to Cu(2+)-catalyzed and 2,2'-azobis-(2-amidinopropane hydrochloride) (AAPH)-initiated oxidation. Extent of LDL modification was measured as lag time, the formation rate of conjugated dienes (CDs), the maximum amount of CDs formed, formation of lipid peroxides, and the relative electrophoretic mobility of LDL on agarose gels. Dietary supplementation with omega-3 FAs increased the concentration of total omega-3 FAs in LDL and reduced the concentration of vitamin E in serum. The omega-3 FA-enriched LDL particles were not more susceptible to Cu(2+)-catalyzed, AAPH-initiated, or autologous cell-mediated oxidation than control LDL. In fact, enrichment with omega-3 FAs significantly reduced the formation rate of CDs when LDL was subjected to AAPH-induced oxidation. Supplementation with moderate amounts of antioxidants significantly increased the concentration of vitamin E in serum and increased the resistance of LDL to undergo Cu(2+)-catalyzed oxidation, measured as increased lag time, reduced formation of lipid peroxides, and reduced relative electrophoretic mobility compared with control LDL. Supplementation with omega-3 FAs/antioxidants showed oxidizability of LDL similar to that of control LDL and omega-3 FA-enriched LDL. In conclusion, omega-3 FAs neither rendered the LDL particles more susceptible to undergo in vitro oxidation nor influenced mononuclear cells' ability to oxidize autologous LDL, whereas moderate amounts of antioxidants protected LDL against oxidative modification.


Assuntos
Antioxidantes/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Óleos de Peixe/farmacologia , Hiperlipidemia Familiar Combinada/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/sangue , Fumar/sangue , Administração Oral , Adulto , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/sangue , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Coenzimas , Cobre/farmacologia , Método Duplo-Cego , Sinergismo Farmacológico , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-3/uso terapêutico , Óleos de Peixe/administração & dosagem , Óleos de Peixe/sangue , Óleos de Peixe/uso terapêutico , Humanos , Hiperlipidemia Familiar Combinada/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Oxidantes/farmacologia , Oxirredução , Tamanho da Partícula , Fosfolipídeos/sangue , Fosfolipídeos/química , Eletricidade Estática , Ubiquinona/administração & dosagem , Ubiquinona/análogos & derivados , Ubiquinona/sangue , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Vitamina E/administração & dosagem , Vitamina E/sangue , Vitamina E/farmacologia , Vitamina E/uso terapêutico , beta Caroteno/administração & dosagem , beta Caroteno/sangue , beta Caroteno/farmacologia , beta Caroteno/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...