Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 225(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35904096

RESUMO

Nutrition is a central factor influencing immunity and resistance to infection, but the extent to which nutrition during development affects adult responses to infections is poorly understood. Our study investigated how the nutritional composition of the larval diet affects the survival, pathogen load and food intake of adult fruit flies, Bactrocera tryoni, after septic bacterial infection. We found a sex-specific effect of larval diet composition on survival post-infection: survival rate was higher and bacterial load was lower for infected females raised on a sugar-rich larval diet than for females raised on a protein-rich larval diet, an effect that was absent in males. Both males and females were heavier when fed a balanced larval diet compared with a protein- or sugar-rich diet, while body lipid reserves were higher for those that had consumed the sugar-rich larval diet compared with other diets. Body protein reserves were lower for flies that had been raised on the sugar-rich larval diet compared with other diets in males, but not females. Both females and males shifted their nutrient intake to ingest a sugar-rich diet when infected compared with sham-infected flies without any effect of the larval diet, suggesting that sugar-rich diets can be beneficial to fight off bacterial infection as shown in previous literature. Overall, our findings show that nutrition during early life can shape individual fitness in adulthood.


Assuntos
Tephritidae , Animais , Dieta , Ingestão de Alimentos , Feminino , Larva/fisiologia , Masculino , Açúcares , Tephritidae/fisiologia
2.
Am Nat ; 199(5): E170-E185, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35472016

RESUMO

AbstractHabitat quality early in life determines individual fitness, with possible long-term evolutionary effects on groups and populations. In holometabolous insects, larval ecology plays a major role in determining the expression of traits in adulthood, but how ecological conditions during the larval stage interact to shape adult life history and fitness, particularly in nonmodel organisms, remains subject to scrutiny. Consequently, our knowledge of the interactive effects of ecological factors on insect development is limited. Here, using the polyphagous fly Bactrocera tryoni, we conducted a fully factorial design where we manipulated larval density and larval diet (protein rich, standard, and sugar rich) to gain insights into how these ecological factors interact to modulate adult fitness. As expected, a protein-rich diet resulted in faster larval development and heavier and leaner adults that were more fecund compared with the standard and sugar-rich diets, irrespective of larval density. Females from the protein-rich larval diet had overall higher reproductive rate (i.e., eggs per day) than females from other diets, and reproductive rate decreased linearly with density for females from the protein-rich diet but nonlinearly for females from the standard and sugar-rich diets over time. Surprisingly, adult lipid reserve increased with larval density for adults from the sugar-rich diet (as opposed to decreasing as in other diets), possibly because of a stress response to an extremely adverse condition during development (i.e., high intraspecific competition and poor nutrition). Together, our results provide insights into how ecological factors early in life interact and shape the fate of individuals through life stages in holometabolous insects.


Assuntos
Características de História de Vida , Tephritidae , Animais , Dieta , Feminino , Insetos , Larva , Açúcares
3.
Infect Genet Evol ; 88: 104697, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33370595

RESUMO

Terrestrial and aquatic birds have been proposed as sentinels for the spread of antimicrobial resistant bacteria, but few species have been investigated specifically in the context of AMR in the marine ecosystem. This study contrasts the occurrence of class 1 integrons and associated antimicrobial resistance genes in wild and captive little penguins (Eudyptula minor), an Australian seabird with local population declines. PCR screening of faecal samples (n = 448) revealed a significant difference in the prevalence of class 1 integrons in wild and captive groups, 3.2% and 44.7% respectively, with genes that confer resistance to streptomycin, spectinomycin, trimethoprim and multidrug efflux pumps detected. Class 1 integrons were not detected in two clinically relevant bacterial species, Klebsiella pneumoniae or Escherichia coli, isolated from penguin faeces. The presence of class 1 integrons in the little penguin supports the use of marine birds as sentinels of AMR in marine environments.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Integrons , Microbiota , Spheniscidae/microbiologia , Animais , Antibacterianos/farmacologia , Austrália/epidemiologia , Técnicas de Tipagem Bacteriana/métodos , DNA Bacteriano , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana
4.
J Insect Physiol ; 120: 103969, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678599

RESUMO

Nutrition is a major mediator of insect life-history trait expression. While the role of macronutrient (carbohydrate and protein) balance on trait expression has received substantial attention, the implications of different classes of specific macronutrients remains virtually unexplored. Here, we addressed this gap by varying the type of carbohydrate in larval diets of the polyphagous fruit fly Bactrocera tryoni (aka 'Queensland fruit fly'). Sourcing insects from a colony maintained using larval diets that contain sucrose, we assessed the effects of sucrose, maltose, and lactose on larval development and adult traits. Replacement of sucrose with lactose resulted in slow larval growth, as well as decreases in pupation, adult emergence and adult body weight for both sexes, although adult lipid reserves were unaffected. Sucrose and maltose were equivalent in terms of larval growth, pupation, adult emergence and adult weight of both sexes. Surprisingly, adults from larvae reared on diets containing maltose had lower lipid reserves than adults from larvae reared on diets containing either lactose or sucrose. The sex ratio of adults at emergence from larvae reared on diets containing lactose and maltose was balanced, but was female-biased in adults from larvae reared on diets containing sucrose. Our results show that carbohydrate sources are not equivalent for development of the Queensland fruit fly, affecting both larval development and adult traits. These findings have implications for understanding the ecology of this highly polyphagous species which infests fruits with highly diverse carbohydrate contents, as well as for the rearing and management of this pest species.


Assuntos
Lactose/metabolismo , Maltose/metabolismo , Sacarose/metabolismo , Tephritidae/crescimento & desenvolvimento , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta , Feminino , Lactose/administração & dosagem , Larva/crescimento & desenvolvimento , Masculino , Maltose/administração & dosagem , Sacarose/administração & dosagem
5.
BMC Microbiol ; 19(Suppl 1): 286, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870299

RESUMO

BACKROUND: Commensal microbes can promote survival and growth of developing insects, and have important fitness implications in adulthood. Insect larvae can acquire commensal microbes through two main routes: by vertical acquisition from maternal deposition of microbes on the eggshells and by horizontal acquisition from the environment where the larvae develop. To date, however, little is known about how microbes acquired through these different routes interact to shape insect development. In the present study, we investigated how vertically and horizontally acquired microbiota influence larval foraging behaviour, development time to pupation and pupal production in the Queensland fruit fly ('Qfly'), Bactrocera tryoni. RESULTS: Both vertically and horizontally acquired microbiota were required to maximise pupal production in Qfly. Moreover, larvae exposed to both vertically and horizontally acquired microbiota pupated sooner than those exposed to no microbiota, or only to horizontally acquired microbiota. Larval foraging behaviour was also influenced by both vertically and horizontally acquired microbiota. Larvae from treatments exposed to neither vertically nor horizontally acquired microbiota spent more time overall on foraging patches than did larvae of other treatments, and most notably had greater preference for diets with extreme protein or sugar compositions. CONCLUSION: The integrity of the microbiota early in life is important for larval foraging behaviour, development time to pupation, and pupal production in Qflies. These findings highlight the complexity of microbial relations in this species, and provide insights to the importance of exposure to microbial communities during laboratory- or mass-rearing of tephritid fruit flies.


Assuntos
Bactérias/classificação , Comportamento Consumatório/fisiologia , Tephritidae/fisiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Feminino , Microbioma Gastrointestinal , Larva/crescimento & desenvolvimento , Larva/microbiologia , Filogenia , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Simbiose , Tephritidae/microbiologia
6.
R Soc Open Sci ; 6(4): 190090, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31183148

RESUMO

In holometabolous insects, larval nutrition is a key factor underpinning development and fitness. Heterogeneity in the nutritional environment and larval competition can force larvae to forage in suboptimal diets, with potential downstream fitness effects. Little is known about how larvae respond to competitive heterogeneous environments, and whether variation in these responses affects current and next generations. Here, we designed nutritionally heterogeneous foraging arenas by modifying nutrient concentration, where groups of the polyphagous fruit fly Bactrocera tryoni could forage freely at various levels of larval competition. Larval foraging preferences were highly consistent and independent of larval competition, with greatest foraging propensity for high (100%) followed by intermediate (80% and 60%) nutrient concentration diets, and avoidance of lower concentration diets (less than 60%). We then used these larval preferences (i.e. 100%, 80% and 60% diets) in fitness assays in which larvae competition was maintained constant, and showed that nutrient concentrations selected by the larvae in the foraging trials had no effect on fitness-related traits such as egg hatching and pupation success, adult flight ability, sex ratio, percentage of emergence, nor on adult cold tolerance, fecundity and next-generation pupal weight. These results support the idea that polyphagous species can exploit diverse hosts and nutritional conditions with minimal fitness costs to thrive in new environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...