Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(18): 6897-6905, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725520

RESUMO

Light-responsive molecular tools targeting kinases affords one the opportunity to study the underlying cellular function of selected kinases. In efforts to externally control lymphocyte-specific protein tyrosine kinase (LCK) activity, the development of release-and-report LCK inhibitors is described, in which (i) the release of the active kinase inhibitor can be controlled externally with light; and (ii) fluorescence is employed to report both the release and binding of the active kinase inhibitor. This introduces an unprecedented all-photonic method for users to both control and monitor real-time inhibitory activity. A functional cellular assay demonstrated light-mediated LCK inhibition in natural killer cells. The use of coumarin-derived caging groups resulted in rapid cellular uptake and non-specific intracellular localisation, while a BODIPY-derived caging group predominately localised in the cellular membrane. This concept of release-and-report inhibitors has the potential to be extended to other biorelevant targets where both spatiotemporal control in a cellular setting and a reporting mechanism would be beneficial.

2.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473764

RESUMO

Inhibition of insulin-regulated aminopeptidase (IRAP) has been shown to improve cognitive functions in several animal models. Recently, we performed a screening campaign of approximately 10,000 compounds, identifying novel small-molecule-based compounds acting as inhibitors of the enzymatic activity of IRAP. Here we report on the chemical synthesis, structure-activity relationships (SAR) and initial characterization of physicochemical properties of a series of 48 imidazo [1,5-α]pyridine-based inhibitors, including delineation of their mode of action as non-competitive inhibitors with a small L-leucine-based IRAP substrate. The best compound displays an IC50 value of 1.0 µM. We elucidate the importance of two chiral sites in these molecules and find they have little impact on the compound's metabolic stability or physicochemical properties. The carbonyl group of a central urea moiety was initially believed to mimic substrate binding to a catalytically important Zn2+ ion in the active site, although the plausibility of this binding hypothesis is challenged by observation of excellent selectivity versus the closely related aminopeptidase N (APN). Taken together with the non-competitive inhibition pattern, we also consider an alternative model of allosteric binding.


Assuntos
Aminopeptidases , Insulina , Animais , Insulina Regular Humana , Antígenos CD13 , Leucil Aminopeptidase , Piridinas
3.
Antimicrob Agents Chemother ; 68(3): e0106423, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38349161

RESUMO

Screening a library of 1,200 preselected kinase inhibitors for anti-human rhinovirus 2 (HRV-2) activity in HeLa cells identified a class of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) as effective virus blockers. These were based on the 4-anilinoquinazoline-7-oxypiperidine scaffold, with the most potent representative AZ5385 inhibiting the virus with EC50 of 0.35 µM. Several structurally related analogs confirmed activity in the low µM range, while interestingly, other TKIs targeting EGFR lacked anti-HRV-2 activity. To further probe this lack of association between antiviral activity and EGFR inhibition, we stained infected cells with antibodies specific for activated EGFR (Y1068) and did not observe a dependency on EGFR-TK activity. Instead, consecutive passages of HRV-2 in HeLa cells in the presence of a compound and subsequent nucleotide sequence analysis of resistant viral variants identified the S181T and T210A alterations in the major capsid VP1 protein, with both residues located in the vicinity of a known hydrophobic pocket on the viral capsid. Further characterization of the antiviral effects of AZ5385 showed a modest virus-inactivating (virucidal) activity, while anti-HRV-2 activity was still evident when the inhibitor was added as late as 10 h post infection. The RNA copy/infectivity ratio of HRV-2 propagated in AZ5385 presence was substantially higher than that of control HRV indicating that the compound preferentially targeted HRV progeny virions during their maturation in infected cells. Besides HRV, the compound showed anti-respiratory syncytial virus activity, which warrants its further studies as a candidate compound against viral respiratory infections.


Assuntos
Rhinovirus , Humanos , Rhinovirus/química , Rhinovirus/genética , Células HeLa , Proteínas do Capsídeo , Antivirais/química , Receptores ErbB
4.
iScience ; 27(2): 108907, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318365

RESUMO

SAMHD1 is a dNTP triphosphohydrolase governing nucleotide pool homeostasis and can detoxify chemotherapy metabolites controlling their clinical responses. To understand SAMHD1 biology and investigate the potential of targeting SAMHD1 as neoadjuvant to current chemotherapies, we set out to discover selective small-molecule inhibitors. Here, we report a discovery pipeline encompassing a biochemical screening campaign and a set of complementary biochemical, biophysical, and cell-based readouts for rigorous characterization of the screen output. The identified small molecules, TH6342 and analogs, accompanied by inactive control TH7126, demonstrated specific, low µM potency against both physiological and oncology-drug-derived substrates. By coupling kinetic studies with thermal shift assays, we reveal the inhibitory mechanism of TH6342 and analogs, which engage pre-tetrameric SAMHD1 and deter oligomerization and allosteric activation without occupying nucleotide-binding pockets. Altogether, our study diversifies inhibitory modes against SAMHD1, and the discovery pipeline reported herein represents a thorough framework for future SAMHD1 inhibitor development.

5.
ACS Med Chem Lett ; 14(12): 1882-1890, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116431

RESUMO

Precise length, shape, and linker attachment points are all integral components to designing efficacious proteolysis targeting chimeras (PROTACs). Due to the synthetic complexity of these heterobifunctional degraders and the difficulty of computational modeling to aid PROTAC design, the exploration of structure-activity relationships remains mostly empirical, which requires a significant investment of time and resources. To facilitate rapid hit finding, we developed capabilities for PROTAC parallel synthesis and purification by harnessing an array of preformed E3-ligand-linker intermediates. In the next iteration of this approach, we developed a rapid, nanomole-scale PROTAC synthesis methodology using amide coupling that enables direct screening of nonpurified reaction mixtures in cell-based degradation assays, as well as logD and EPSA measurements. This approach greatly expands and accelerates PROTAC SAR exploration (5 days instead of several weeks) as well as avoids laborious and solvent-demanding purification of the reaction mixtures, thus making it an economical and more sustainable methodology for PROTAC hit finding.

6.
ChemMedChem ; 18(1): e202200310, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36128847

RESUMO

8-oxo Guanine DNA Glycosylase 1 is the initiating enzyme within base excision repair and removes oxidized guanines from damaged DNA. Since unrepaired 8-oxoG could lead to G : C→T : A transversion, base removal is of utmost importance for cells to ensure genomic integrity. For cells with elevated levels of reactive oxygen species this dependency is further increased. In the past we and others have validated OGG1 as a target for inhibitors to treat cancer and inflammation. Here, we present the optimization campaign that led to the broadly used tool compound TH5487. Based on results from a small molecule screening campaign, we performed hit to lead expansion and arrived at potent and selective substituted N-piperidinyl-benzimidazolones. Using X-ray crystallography data, we describe the surprising binding mode of the most potent member of the class, TH8535. Here, the N-Piperidinyl-linker adopts a chair instead of a boat conformation which was found for weaker analogues. We further demonstrate cellular target engagement and efficacy of TH8535 against a number of cancer cell lines.


Assuntos
DNA Glicosilases , Neoplasias , Humanos , DNA Glicosilases/química , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Guanina/química , Guanina/metabolismo , Reparo do DNA , Benzimidazóis/farmacologia , Dano ao DNA
7.
Nucleic Acids Res ; 50(22): e129, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36189884

RESUMO

Drugs are designed to bind their target proteins in physiologically relevant tissues and organs to modulate biological functions and elicit desirable clinical outcomes. Information about target engagement at cellular and subcellular resolution is therefore critical for guiding compound optimization in drug discovery, and for probing resistance mechanisms to targeted therapies in clinical samples. We describe a target engagement-mediated amplification (TEMA) technology, where oligonucleotide-conjugated drugs are used to visualize and measure target engagement in situ, amplified via rolling-circle replication of circularized oligonucleotide probes. We illustrate the TEMA technique using dasatinib and gefitinib, two kinase inhibitors with distinct selectivity profiles. In vitro binding by the dasatinib probe to arrays of displayed proteins accurately reproduced known selectivity profiles, while their differential binding to fixed adherent cells agreed with expectations from expression profiles of the cells. We also introduce a proximity ligation variant of TEMA to selectively investigate binding to specific target proteins of interest. This form of the assay serves to improve resolution of binding to on- and off-target proteins. In conclusion, TEMA has the potential to aid in drug development and clinical routine by conferring valuable insights in drug-target interactions at spatial resolution in protein arrays, cells and in tissues.


Assuntos
Terapia de Alvo Molecular , Dasatinibe/farmacologia , Sondas de Oligonucleotídeos , Análise Serial de Proteínas , Proteínas , Gefitinibe/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Terapia de Alvo Molecular/métodos
8.
Tuberculosis (Edinb) ; 135: 102222, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35738191

RESUMO

Drug resistance in Mycobacterium tuberculosis is an emerging threat that makes the discovery of new candidate drugs a priority. In particular, drugs with high sterilizing activity within host cells are needed to improve efficacy and reduce treatment duration. We aimed to develope and validate a High Content Screening assay based on Mycobacterium tuberculosis-infected primary human monocyte-derived macrophages as its natural reservoir. Infected primary human monocyte-derived macrophages were exposed to control antibiotics or tested compounds on 384 well plates. Intracellular bacterial growth and macrophage numbers were evaluated using an ImageXpress High Content Screening system and Z'-factor was calculated to assess the reproducibility. The combination of isoniazid and rifampicin as a positive control rendered a Z'-factor above 0.4, demonstrating suitability of the assay for screening and compound profiling purposes. In a validation experiment, isoniazid, rifampicin, moxifloxacin and levofloxacin all effectively inhibited intracellular growth as expected. Finally, a pilot screening campaign including 5700 compounds from diverse libraries resulted in the identification of three compounds with confirmed antimycobacterial activity in the low micromolar range and low host cell toxicity. The assay represents an attractive screening platform for both academic research on host-pathogen mechanisms in tuberculosis and for the identification and characterization of novel antimycobacterial compounds.


Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Antituberculosos/farmacologia , Humanos , Isoniazida/farmacologia , Macrófagos/microbiologia , Reprodutibilidade dos Testes , Rifampina/farmacologia
9.
Eur J Med Chem ; 234: 114226, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35305461

RESUMO

REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase that is required for development of multiple human tissues, but which is also an important contributor to human cancers. RET activation through rearrangement or point mutations occurs in thyroid and lung cancers. Furthermore, activation of wild type RET is an increasingly recognized mechanism promoting tumor growth and dissemination of a much broader group of cancers. RET is therefore an attractive therapeutic target for small-molecule kinase inhibitors. Non-invasive control of RET signaling with light offers the promise of unveiling its complex spatiotemporal dynamics in vivo. In this work, photoswitchable DFG-out RET kinase inhibitors based on heterocycle-derived azobenzenes were developed, enabling photonic control of RET activity. Based on the binding mode of DFG-out kinase inhibitors and using RET kinase as the test model, we developed a photoswitchable inhibitor with a quinoline "head" constituting the azoheteroarene. This azo compound was further modified by three different strategies to increase the difference in biological activity between the E-isomer and the light enriched Z-isomer. Stilbene-based derivatives were used as model compounds to guide in the selection of substituents that could eventually be introduced to the corresponding azo compounds. The most promising quinoline-based compound showed more than a 15-fold difference in bioactivity between the two isomers in a biochemical assay. However, the same compound showed a decreased Z/E (IC50) ratio in the cellular assay, tentatively assigned to stability issues. The corresponding stilbene compound gave a Z/E (IC50) ratio well above 100, consistent with that measured in the biochemical assay. Ultimately, a 7-azaindole based photoswitchable DFG-out kinase inhibitor was shown to display more than a 10-fold difference in bioactivity between the two isomers, in both a biochemical and a cell-based assay, as well as excellent stability even under reducing conditions.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Estilbenos , Antineoplásicos/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-ret , Receptores Proteína Tirosina Quinases
10.
Cell Death Dis ; 12(10): 914, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615851

RESUMO

Malignant cells display an increased sensitivity towards drugs that reduce the function of the ubiquitin-proteasome system (UPS), which is the primary proteolytic system for destruction of aberrant proteins. Here, we report on the discovery of the bioactivatable compound CBK77, which causes an irreversible collapse of the UPS, accompanied by a general accumulation of ubiquitylated proteins and caspase-dependent cell death. CBK77 caused accumulation of ubiquitin-dependent, but not ubiquitin-independent, reporter substrates of the UPS, suggesting a selective effect on ubiquitin-dependent proteolysis. In a genome-wide CRISPR interference screen, we identified the redox enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) as a critical mediator of CBK77 activity, and further demonstrated its role as the compound bioactivator. Through affinity-based proteomics, we found that CBK77 covalently interacts with ubiquitin. In vitro experiments showed that CBK77-treated ubiquitin conjugates were less susceptible to disassembly by deubiquitylating enzymes. In vivo efficacy of CBK77 was validated by reduced growth of NQO1-proficient human adenocarcinoma cells in nude mice treated with CBK77. This first-in-class NQO1-activatable UPS inhibitor suggests that it may be possible to exploit the intracellular environment in malignant cells for leveraging the impact of compounds that impair the UPS.


Assuntos
NAD(P)H Desidrogenase (Quinona)/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/antagonistas & inibidores , Animais , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/metabolismo , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Camundongos Nus , Fenótipo , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Chem Commun (Camb) ; 57(78): 10043-10046, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34505602

RESUMO

We report the synthesis and characterisation of a photoswitchable DFG-out kinase inhibitor. Photocontrol of the target kinase in both enzymatic and living cell assays is demonstrated.


Assuntos
Compostos Azo/farmacologia , Desenvolvimento de Medicamentos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Compostos Azo/química , Células HEK293 , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/química
13.
Bioorg Med Chem ; 30: 115898, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33388594

RESUMO

The spread of antibiotic resistance within the ESKAPE group of human pathogenic bacteria poses severe challenges in the treatment of infections and maintenance of safe hospital environments. This motivates efforts to validate novel target proteins within these species that could be pursued as potential targets for antibiotic development. Genetic data suggest that the enzyme FabG, which is part of the bacterial fatty acid biosynthetic system FAS-II, is essential in several ESKAPE pathogens. FabG catalyzes the NADPH dependent reduction of 3-keto-acyl-ACP during fatty acid elongation, thus enabling lipid supply for production and maintenance of the cell envelope. Here we report on small-molecule screening on the FabG enzymes from A. baumannii and S. typhimurium to identify a set of µM inhibitors, with the most potent representative (1) demonstrating activity against six FabG-orthologues. A co-crystal structure with FabG from A. baumannii (PDB:6T65) confirms inhibitor binding at an allosteric site located in the subunit interface, as previously demonstrated for other sub-µM inhibitors of FabG from P. aeruginosa. We show that inhibitor binding distorts the oligomerization interface in the FabG tetramer and displaces crucial residues involved in the interaction with the co-substrate NADPH. These observations suggest a conserved allosteric site across the FabG family, which can be potentially targeted for interference with fatty acid biosynthesis in clinically relevant ESKAPE pathogens.


Assuntos
Acinetobacter baumannii/enzimologia , Oxirredutases do Álcool/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Pseudomonas aeruginosa/enzimologia , Salmonella typhimurium/enzimologia , Oxirredutases do Álcool/metabolismo , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Relação Estrutura-Atividade
14.
Nat Chem Biol ; 16(10): 1120-1128, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690945

RESUMO

The NUDIX hydrolase NUDT15 was originally implicated in sanitizing oxidized nucleotides, but was later shown to hydrolyze the active thiopurine metabolites, 6-thio-(d)GTP, thereby dictating the clinical response of this standard-of-care treatment for leukemia and inflammatory diseases. Nonetheless, its physiological roles remain elusive. Here, we sought to develop small-molecule NUDT15 inhibitors to elucidate its biological functions and potentially to improve NUDT15-dependent chemotherapeutics. Lead compound TH1760 demonstrated low-nanomolar biochemical potency through direct and specific binding into the NUDT15 catalytic pocket and engaged cellular NUDT15 in the low-micromolar range. We also employed thiopurine potentiation as a proxy functional readout and demonstrated that TH1760 sensitized cells to 6-thioguanine through enhanced accumulation of 6-thio-(d)GTP in nucleic acids. A biochemically validated, inactive structural analog, TH7285, confirmed that increased thiopurine toxicity takes place via direct NUDT15 inhibition. In conclusion, TH1760 represents the first chemical probe for interrogating NUDT15 biology and potential therapeutic avenues.


Assuntos
Pirofosfatases/antagonistas & inibidores , Pirofosfatases/metabolismo , Sítios de Ligação , Linhagem Celular , Desenho de Fármacos , Desenvolvimento de Medicamentos , Escherichia coli , Humanos , Pirofosfatase Inorgânica/antagonistas & inibidores , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/genética , Relação Estrutura-Atividade
15.
Front Chem ; 8: 443, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32548091

RESUMO

Computational chemistry has now been widely accepted as a useful tool for shortening lead times in early drug discovery. When selecting new potential drug targets, it is important to assess the likelihood of finding suitable starting points for lead generation before pursuing costly high-throughput screening campaigns. By exploiting available high-resolution crystal structures, an in silico druggability assessment can facilitate the decision of whether, and in cases where several protein family members exist, which of these to pursue experimentally. Many of the algorithms and software suites commonly applied for in silico druggability assessment are complex, technically challenging and not always user-friendly. Here we applied the intuitive open access servers of DoGSite, FTMap and CryptoSite to comprehensively predict ligand binding pockets, druggability scores and conformationally active regions of the NUDIX protein family. In parallel we analyzed potential ligand binding sites, their druggability and pocket parameter using Schrödinger's SiteMap. Then an in silico docking cascade of a subset of the ZINC FragNow library using the Glide docking program was performed to assess identified pockets for large-scale small-molecule binding. Subsequently, this initial dual ranking of druggable sites within the NUDIX protein family was benchmarked against experimental hit rates obtained both in-house and by others from traditional biochemical and fragment screening campaigns. The observed correlation suggests that the presented user-friendly workflow of a dual parallel in silico druggability assessment is applicable as a standalone method for decision on target prioritization and exclusion in future screening campaigns.

16.
ChemistryOpen ; 9(3): 325-337, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32154052

RESUMO

Insulin-regulated aminopeptidase (IRAP) is a new potential macromolecular target for drugs aimed for treatment of cognitive disorders. Inhibition of IRAP by angiotensin IV (Ang IV) improves the memory and learning in rats. The majority of the known IRAP inhibitors are peptidic in character and suffer from poor pharmacokinetic properties. Herein, we present a series of small non-peptide IRAP inhibitors derived from a spiro-oxindole dihydroquinazolinone screening hit (pIC50 5.8). The compounds were synthesized either by a simple microwave (MW)-promoted three-component reaction, or by a two-step one-pot procedure. For decoration of the oxindole ring system, rapid MW-assisted Suzuki-Miyaura cross-couplings (1 min) were performed. A small improvement of potency (pIC50 6.6 for the most potent compound) and an increased solubility could be achieved. As deduced from computational modelling and MD simulations it is proposed that the S-configuration of the spiro-oxindole dihydroquinazolinones accounts for the inhibition of IRAP.


Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Oxindóis/síntese química , Inibidores de Proteases/síntese química , Quinazolinonas/síntese química , Animais , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Oxindóis/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Conformação Proteica , Quinazolinonas/metabolismo , Ratos , Receptores de Angiotensina/metabolismo , Solubilidade , Relação Estrutura-Atividade
17.
EMBO Mol Med ; 12(3): e10419, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31950591

RESUMO

The deoxycytidine analogue cytarabine (ara-C) remains the backbone treatment of acute myeloid leukaemia (AML) as well as other haematological and lymphoid malignancies, but must be combined with other chemotherapeutics to achieve cure. Yet, the underlying mechanism dictating synergistic efficacy of combination chemotherapy remains largely unknown. The dNTPase SAMHD1, which regulates dNTP homoeostasis antagonistically to ribonucleotide reductase (RNR), limits ara-C efficacy by hydrolysing the active triphosphate metabolite ara-CTP. Here, we report that clinically used inhibitors of RNR, such as gemcitabine and hydroxyurea, overcome the SAMHD1-mediated barrier to ara-C efficacy in primary blasts and mouse models of AML, displaying SAMHD1-dependent synergy with ara-C. We present evidence that this is mediated by dNTP pool imbalances leading to allosteric reduction of SAMHD1 ara-CTPase activity. Thus, SAMHD1 constitutes a novel biomarker for combination therapies of ara-C and RNR inhibitors with immediate consequences for clinical practice to improve treatment of AML.


Assuntos
Citarabina/farmacologia , Leucemia Mieloide Aguda , Pirofosfatases/metabolismo , Ribonucleotídeo Redutases/antagonistas & inibidores , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Animais , Arabinofuranosilcitosina Trifosfato/metabolismo , Camundongos
18.
SLAS Discov ; 25(2): 118-126, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31665966

RESUMO

The cellular thermal shift assay (CETSA) was introduced in 2013 to investigate drug-target engagement inside live cells and tissues. As with all thermal shift assays, the response measured by CETSA is not simply governed by ligand affinity to the investigated target protein, but the thermodynamics and kinetics of ligand binding and protein unfolding also contribute to the observed protein stabilization. This limitation is commonly neglected in current applications of the method to validate the target of small-molecule probes. Instead, there is an eagerness to make direct comparisons of CETSA measurements with functional and phenotypic readouts from cells at 37 °C. Here, we present a perspective of the early CETSA literature and put the accumulated data into a quantitative context. The analysis includes annotation of ~270 peer-reviewed papers, the majority of which do not consider the underlying biophysical basis of CETSA. We also detail what future technology developments are needed to enable CETSA-based optimization of structure-activity relationships and more appropriate comparisons of these data with functional or phenotypic responses. Finally, we describe ongoing developments in assay formats that allow for CETSA measurements at single-cell resolution, with the aspiration to allow differentiation in cellular target engagement between cells in co-cultures and more complex models, such as organoids and potentially even tissue.


Assuntos
Bioensaio/tendências , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Relação Estrutura-Atividade , Humanos , Cinética , Ligantes , Termodinâmica
20.
ACS Chem Biol ; 14(9): 1913-1920, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31329413

RESUMO

Demonstration of target binding is a key requirement for understanding the mode of action of new therapeutics. The cellular thermal shift assay (CETSA) has been introduced as a powerful label-free method to assess target engagement in physiological environments. Here, we present the application of live-cell CETSA to different classes of integral multipass transmembrane proteins using three case studies, the first showing a large and robust stabilization of the outer mitochondrial five-pass transmembrane protein TSPO, the second being a modest stabilization of SERCA2, and the last describing an atypical compound-driven stabilization of the GPCR PAR2. Our data demonstrated that using modified protocols with detergent extraction after the heating step, CETSA can reliably be applied to several membrane proteins of different complexity. By showing examples with distinct CETSA behaviors, we aim to provide the scientific community with an overview of different scenarios to expect during CETSA experiments, especially for challenging, membrane bound targets.


Assuntos
Receptor PAR-2/metabolismo , Receptores de GABA/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Aminoquinolinas/farmacologia , Benzamidas/farmacologia , Benzimidazóis/farmacologia , Benzodiazepinonas/farmacologia , Benzodioxóis/farmacologia , Álcoois Benzílicos/farmacologia , Bioensaio , Linhagem Celular Tumoral , Antagonistas GABAérgicos/farmacologia , Células HEK293 , Temperatura Alta , Humanos , Imidazóis/farmacologia , Transição de Fase/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Piridinas/farmacologia , Receptor PAR-2/antagonistas & inibidores , Receptor PAR-2/química , Receptores de GABA/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Tapsigargina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...