Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Resusc Plus ; 15: 100451, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662640

RESUMO

Introduction: Most cardiac arrest (CA) survivors report good health and quality of life. Life satisfaction on the other hand has not yet been studied in a large scale in the CA population. We aimed to explore life satisfaction as perceived by CA survivors with three research questions addressed: (1) how do CA survivors report their life satisfaction, (2) how are different domains of life satisfaction associated with overall life satisfaction, and (3) how are demographic and medical factors associated with overall life satisfaction? Methods: This registry study had a cross-sectional design. Life satisfaction was assessed using the 11-item Life Satisfaction checklist (LiSat-11). The sample included 1435 survivors ≥18 years of age. Descriptive statistics and binary logistic regression analyses were used. Results: Survivors were most satisfied with partner relation (85.6%), family life (82.2%), and self-care (77.8%), while 60.5% were satisfied with overall life. Satisfaction with psychological health was strongest associated with overall life satisfaction. Among medical and demographic factors, female sex and poor cerebral performance were associated with less overall life satisfaction. Conclusions: Generally, CA survivors seem to perceive similar levels of overall life satisfaction as general populations, while survivors tend to be significantly less satisfied with their sexual life. Satisfaction with psychological health is of special interest to identify and treat. Additionally, female survivors and survivors with poor neurological outcome are at risk for poorer overall life satisfaction and need special attention by healthcare professionals.

2.
Sci Adv ; 9(29): eadh2605, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37467321

RESUMO

Chimeric antigen receptor (CAR) T cell therapy is used in treating human hematological malignancies, but its efficacy is limited by T cell exhaustion (TEX). TEX arises at the expense of central memory T cells (TCM), which exhibit robust antitumor efficacy. Reduction of the TET2 gene led to increased TCM differentiation in a patient with leukemia who experienced a complete remission. We show that loss of TET2 led to increased chromatin accessibility at exhaustion regulators TOX and TOX2, plus increased expression of TOX2. Knockdown of TOX increased the percentage of TCM. However, unexpectedly, knockdown of TOX2 decreased TCM percentage and reduced proliferation. Consistently, a TCM gene signature was reduced in the TOX2 knockdown, and TOX2 bound to promoters of numerous TCM genes. Our results thus suggest a role for human TOX2, in contrast to exhaustion regulator TOX, as a potentiator of central memory differentiation of CAR T cells, with plausible utility in CAR T cell cancer therapy via modulated TOX2 expression.


Assuntos
Dioxigenases , Neoplasias , Humanos , Diferenciação Celular/genética , Dioxigenases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Imunoterapia Adotiva , Neoplasias/metabolismo , Linfócitos T
4.
Sci Adv ; 8(23): eabj2820, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675405

RESUMO

A notable number of acute lymphoblastic leukemia (ALL) patients develop CD19-positive relapse within 1 year after receiving chimeric antigen receptor (CAR) T cell therapy. It remains unclear if the long-term response is associated with the characteristics of CAR T cells in infusion products, hindering the identification of biomarkers to predict therapeutic outcomes. Here, we present 101,326 single-cell transcriptomes and surface protein landscape from the infusion products of 12 ALL patients. We observed substantial heterogeneity in the antigen-specific activation states, among which a deficiency of T helper 2 function was associated with CD19-positive relapse compared with durable responders (remission, >54 months). Proteomic data revealed that the frequency of early memory T cells, rather than activation or coinhibitory signatures, could distinguish the relapse. These findings were corroborated by independent functional profiling of 49 patients, and an integrative model was developed to predict the response. Our data unveil the molecular mechanisms that may inform strategies to boost specific T cell function to maintain long-term remission.


Assuntos
Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antígenos CD19 , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteômica , Receptores de Antígenos Quiméricos/metabolismo , Recidiva
5.
Nature ; 602(7897): 503-509, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110735

RESUMO

The adoptive transfer of T lymphocytes reprogrammed to target tumour cells has demonstrated potential for treatment of various cancers1-7. However, little is known about the long-term potential and clonal stability of the infused cells. Here we studied long-lasting CD19-redirected chimeric antigen receptor (CAR) T cells in two patients with chronic lymphocytic leukaemia1-4 who achieved a complete remission in 2010. CAR T cells remained detectable more than ten years after infusion, with sustained remission in both patients. Notably, a highly activated CD4+ population emerged in both patients, dominating the CAR T cell population at the later time points. This transition was reflected in the stabilization of the clonal make-up of CAR T cells with a repertoire dominated by a small number of clones. Single-cell profiling demonstrated that these long-persisting CD4+ CAR T cells exhibited cytotoxic characteristics along with ongoing functional activation and proliferation. In addition, longitudinal profiling revealed a population of gamma delta CAR T cells that prominently expanded in one patient concomitant with CD8+ CAR T cells during the initial response phase. Our identification and characterization of these unexpected CAR T cell populations provide novel insight into the CAR T cell characteristics associated with anti-cancer response and long-term remission in leukaemia.


Assuntos
Linfócitos T CD4-Positivos , Imunoterapia Adotiva , Leucemia , Receptores de Antígenos Quiméricos , Antígenos CD19/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Separação Celular , Humanos , Leucemia/imunologia , Leucemia/terapia , Receptores de Antígenos Quiméricos/imunologia , Fatores de Tempo
6.
Cancer Res Commun ; 2(9): 1089-1103, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36922932

RESUMO

CD19-redirected chimeric antigen receptor (CAR) T cells have shown remarkable activity against B-cell cancers. While second-generation CARs induce complete remission in >80% of patients with acute lymphoblastic leukemia, similar monotherapy induces long-term remissions in only 26% of patients with chronic lymphocytic leukemia (CLL). This disparity is attributed to cell-intrinsic effector defects in autologous CLL-derived T cells. However, the mechanisms by which leukemic cells impact CAR T-cell potency are poorly understood. Herein we describe an in vitro assay that recapitulates endogenous CLL-mediated T-cell defects in healthy donor CAR T cells. Contact with CLL cells insufficiently activates, but does not irreversibly impair, CAR T-cell function. This state is rescuable by strong antigenic stimulation or IL2, and is not driven by immune suppression. Rather, this activation defect is attributable to low levels of costimulatory molecules on CLL cells, and exogenous costimulation enhanced CAR T-cell activation. We next assessed the stimulatory phenotype of CLL cells derived from different niches within the same patient. Lymph node (LN)-derived CLL cells had a strong costimulatory phenotype and promoted better CAR T-cell degranulation and cytokine production than matched peripheral blood CLL cells. Finally, in vitro CD40L-activated CLL cells acquired a costimulatory phenotype similar to the LN-derived tumor and stimulated improved CAR T-cell proliferation, cytokine production, and cytotoxicity. Together, these data identify insufficient activation as a driver of poor CAR T-cell responses in CLL. The costimulatory phenotype of CLL cells drives differential CAR T-cell responses, and can be augmented by improving costimulatory signaling. Significance: CLL cells insufficiently activate CAR T cells, driven by low levels of costimulatory molecules on the tumor. LN-derived CLL cells are more costimulatory and mediate enhanced CAR T-cell killing. This costimulatory phenotype can be modeled via CD40 L activation, and the activated tumor promotes stronger CAR T-cell responses.


Assuntos
Leucemia Linfocítica Crônica de Células B , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Leucemia Linfocítica Crônica de Células B/terapia , Receptores de Antígenos Quiméricos/genética , Linfócitos B , Ligante de CD40/genética
7.
J Immunother Cancer ; 9(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34006631

RESUMO

BACKGROUND: Autologous T cells engineered to express a chimeric antigen receptor (CAR) specific for CD19 molecule have transformed the therapeutic landscape in patients with highly refractory leukemia and lymphoma, and the use of donor-generated allogeneic CAR T is paving the way for further breakthroughs in the treatment of cancer. However, it remains unknown how the intrinsic heterogeneities of these engineered cells mediate therapeutic efficacy and whether allogeneic products match the effectiveness of autologous therapies. METHODS: Using single-cell mRNA sequencing in conjunction with CITE-seq, we performed multiomics characterization of CAR T cells generated from healthy donor and patients with acute lymphoblastic leukemia. CAR T cells used in this study were manufactured at the University of Pennsylvania through lentiviral transduction with a CD19-4-1BB-CD3ζ construct. Besides the baseline condition, we engineered NIH-3T3 cells with human CD19 or mesothelin expression to conduct ex vivo antigen-specific or non-antigen stimulation of CAR T cells through 6-hour coculture at a 1:1 ratio. RESULTS: We delineated the global cellular and molecular CAR T landscape and identified that transcriptional CAR tonic signaling was regulated by a mixture of early activation, exhaustion signatures, and cytotoxic activities. On CD19 stimulation, we illuminated the disparities of CAR T cells derived from different origins and found that donor CAR T had more pronounced activation level in correlation with the upregulation of major histocompatibility complex class II genes compared with patient CAR T cells. This finding was independently validated in additional datasets from literature. Furthermore, GM-CSF(CSF2) expression was found to be associated with functional gene productions, but it induced little impact on the CAR T activation. CONCLUSIONS: Through integrated multiomics profiling and unbiased canonical pathway analyses, our results unveil heterogeneities in the transcriptional, phenotypic, functional, and metabolic profiles of donor and patient CAR T cells, providing mechanistic basis for ameliorating clinical outcomes and developing next-generation 'off- the-shelf' allogeneic products.


Assuntos
Antígenos CD19/genética , Perfilação da Expressão Gênica , Imunoterapia Adotiva , Ativação Linfocitária/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/genética , Análise de Célula Única , Linfócitos T/transplante , Transcriptoma , Animais , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Técnicas de Cocultura , Citotoxicidade Imunológica/genética , Humanos , Camundongos , Células NIH 3T3 , Fenótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , RNA-Seq , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
9.
Int J Hematol ; 114(5): 532-543, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32594314

RESUMO

As a rapidly emerging treatment in the oncology field, adoptive transfer of autologous, genetically modified chimeric antigen receptor (CAR) T cells has shown striking efficacy and is curative in certain relapsed/refractory patients with hematologic malignancy. This treatment modality of using a "living drug" offers many tantalizing and novel therapeutic strategies for cancer patients whose remaining treatment options may have otherwise been limited. Despite the early success of CAR T cells in hematologic malignancies, many barriers remain for widespread adoption. General barriers include cellular manufacturing limitations, baseline quality of the T cells, adverse events post-infusion such as cytokine release syndrome (CRS) and neurotoxicity, and host rejection of non-human CARs. Additionally, each hematologic disease presents unique mechanisms of relapse which have to be addressed in future clinical trials if we are to augment the efficacy of CAR T treatment. In this review, we will describe current barriers to hindering efficacy of CAR T-cell treatment for hematologic malignancies in a disease-specific manner and review recent innovations aimed at enhancing the potency and applicability of CAR T cells, with the overall goal of building a framework to begin incorporating this form of therapy into the standard medical management of blood cancers.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Terapia Combinada , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/economia , Imunoterapia Adotiva/tendências , Neoplasias/etiologia , Neoplasias/metabolismo , Prognóstico , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Resultado do Tratamento
10.
Clin Exp Med ; 20(4): 469-480, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32333215

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has come of age, offering a potentially curative option for patients who are refractory to standard anti-cancer treatments. The success of CAR T cell therapy in the setting of acute lymphoblastic leukemia and specific types of B cell lymphoma led to rapid regulatory approvals of CD19-directed CAR T cells, first in the United States and subsequently across the globe. Despite these major milestones in the field of immuno-oncology, growing experience with CAR T cells has also highlighted the major limitations of this strategy, namely challenges associated with manufacturing a bespoke patient-specific product, intrinsic immune cell defects leading to poor CAR T cell function as well as persistence, and/or tumor cell resistance resulting from loss or modulation of the targeted antigen. In addition, both on- and off-tumor immunotoxicities and the financial burden inherent in conventional cellular biomanufacturing often hamper the success of CAR T cell-based treatment approaches. Herein, we provide an overview of the opportunities and challenges related to the first form of gene transfer therapy to gain commercial approval in the United States. Ongoing advances in the areas of genetic engineering, precision genome editing, toxicity mitigation methods and cell manufacturing will improve the efficacy and safety of CAR T cells for hematologic malignancies and expand the use of this novel class of therapeutics to reach solid tumors.


Assuntos
Neoplasias Hematológicas/terapia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Engenharia Genética/métodos , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/economia , Neoplasias/terapia
11.
Cancer Immunol Res ; 6(9): 1100-1109, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30030295

RESUMO

The success of chimeric antigen receptor (CAR)-mediated immunotherapy in acute lymphoblastic leukemia (ALL) highlights the potential of T-cell therapies with directed cytotoxicity against specific tumor antigens. The efficacy of CAR T-cell therapy depends on the engraftment and persistence of T cells following adoptive transfer. Most protocols for T-cell engineering routinely expand T cells ex vivo for 9 to 14 days. Because the potential for engraftment and persistence is related to the state of T-cell differentiation, we hypothesized that reducing the duration of ex vivo culture would limit differentiation and enhance the efficacy of CAR T-cell therapy. We demonstrated that T cells with a CAR-targeting CD19 (CART19) exhibited less differentiation and enhanced effector function in vitro when harvested from cultures at earlier (day 3 or 5) compared with later (day 9) timepoints. We then compared the therapeutic potential of early versus late harvested CART19 in a murine xenograft model of ALL and showed that the antileukemic activity inversely correlated with ex vivo culture time: day 3 harvested cells showed robust tumor control despite using a 6-fold lower dose of CART19, whereas day 9 cells failed to control leukemia at limited cell doses. We also demonstrated the feasibility of an abbreviated culture in a large-scale current good manufacturing practice-compliant process. Limiting the interval between T-cell isolation and CAR treatment is critical for patients with rapidly progressing disease. Generating CAR T cells in less time also improves potency, which is central to the effectiveness of these therapies. Cancer Immunol Res; 6(9); 1100-9. ©2018 AACR.


Assuntos
Técnicas de Cultura de Células , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Animais , Antígenos CD19/genética , Antígenos CD19/imunologia , Antígenos de Neoplasias/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Humanos , Ativação Linfocitária , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nature ; 558(7709): 307-312, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29849141

RESUMO

Cancer immunotherapy based on genetically redirecting T cells has been used successfully to treat B cell malignancies1-3. In this strategy, the T cell genome is modified by integration of viral vectors or transposons encoding chimaeric antigen receptors (CARs) that direct tumour cell killing. However, this approach is often limited by the extent of expansion and persistence of CAR T cells4,5. Here we report mechanistic insights from studies of a patient with chronic lymphocytic leukaemia treated with CAR T cells targeting the CD19 protein. Following infusion of CAR T cells, anti-tumour activity was evident in the peripheral blood, lymph nodes and bone marrow; this activity was accompanied by complete remission. Unexpectedly, at the peak of the response, 94% of CAR T cells originated from a single clone in which lentiviral vector-mediated insertion of the CAR transgene disrupted the methylcytosine dioxygenase TET2 gene. Further analysis revealed a hypomorphic mutation in this patient's second TET2 allele. TET2-disrupted CAR T cells exhibited an epigenetic profile consistent with altered T cell differentiation and, at the peak of expansion, displayed a central memory phenotype. Experimental knockdown of TET2 recapitulated the potency-enhancing effect of TET2 dysfunction in this patient's CAR T cells. These findings suggest that the progeny of a single CAR T cell induced leukaemia remission and that TET2 modification may be useful for improving immunotherapies.


Assuntos
5-Metilcitosina/metabolismo , Antígenos CD19/imunologia , Dioxigenases/genética , Imunoterapia/métodos , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Linfócitos T/imunologia , Linfócitos T/transplante , Transferência Adotiva , Idoso , Alelos , Diferenciação Celular , Ensaios Clínicos como Assunto , Células Clonais/citologia , Células Clonais/imunologia , Dioxigenases/metabolismo , Epigênese Genética , Células HEK293 , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Transgenes
13.
Nat Med ; 24(5): 563-571, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29713085

RESUMO

Tolerance to self-antigens prevents the elimination of cancer by the immune system1,2. We used synthetic chimeric antigen receptors (CARs) to overcome immunological tolerance and mediate tumor rejection in patients with chronic lymphocytic leukemia (CLL). Remission was induced in a subset of subjects, but most did not respond. Comprehensive assessment of patient-derived CAR T cells to identify mechanisms of therapeutic success and failure has not been explored. We performed genomic, phenotypic and functional evaluations to identify determinants of response. Transcriptomic profiling revealed that CAR T cells from complete-responding patients with CLL were enriched in memory-related genes, including IL-6/STAT3 signatures, whereas T cells from nonresponders upregulated programs involved in effector differentiation, glycolysis, exhaustion and apoptosis. Sustained remission was associated with an elevated frequency of CD27+CD45RO-CD8+ T cells before CAR T cell generation, and these lymphocytes possessed memory-like characteristics. Highly functional CAR T cells from patients produced STAT3-related cytokines, and serum IL-6 correlated with CAR T cell expansion. IL-6/STAT3 blockade diminished CAR T cell proliferation. Furthermore, a mechanistically relevant population of CD27+PD-1-CD8+ CAR T cells expressing high levels of the IL-6 receptor predicts therapeutic response and is responsible for tumor control. These findings uncover new features of CAR T cell biology and underscore the potential of using pretreatment biomarkers of response to advance immunotherapies.


Assuntos
Antígenos CD19/metabolismo , Imunoterapia Adotiva , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Receptores de Antígenos Quiméricos/metabolismo , Animais , Feminino , Interleucina-6/metabolismo , Masculino , Camundongos , Fator de Transcrição STAT3/metabolismo , Transcrição Gênica , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...