Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675912

RESUMO

In this paper, we report the characterization of a genetically modified live-attenuated African swine fever virus (ASFV) field strain isolated from Vietnam. The isolate, ASFV-GUS-Vietnam, belongs to p72 genotype II, has six multi-gene family (MGF) genes deleted, and an Escherichia coli GusA gene (GUS) inserted. When six 6-8-week-old pigs were inoculated with ASFV-GUS-Vietnam oro-nasally (2 × 105 TCID50/pig), they developed viremia, mild fever, lethargy, and inappetence, and shed the virus in their oral and nasal secretions and feces. One of the pigs developed severe clinical signs and was euthanized 12 days post-infection, while the remaining five pigs recovered. When ASFV-GUS-Vietnam was inoculated intramuscularly (2 × 103 TCID50/pig) into four 6-8 weeks old pigs, they also developed viremia, mild fever, lethargy, inappetence, and shed the virus in their oral and nasal secretions and feces. Two contact pigs housed together with the four intramuscularly inoculated pigs, started to develop fever, viremia, loss of appetite, and lethargy 12 days post-contact, confirming horizontal transmission of ASFV-GUS-Vietnam. One of the contact pigs died of ASF on day 23 post-contact, while the other one recovered. The pigs that survived the exposure to ASFV-GUS-Vietnam via the mucosal or parenteral route were fully protected against the highly virulent ASFV Georgia 2007/1 challenge. This study showed that ASFV-GUS-Vietnam field isolate is able to induce complete protection in the majority of the pigs against highly virulent homologous ASFV challenge, but has the potential for horizontal transmission, and can be fatal in some animals. This study highlights the need for proper monitoring and surveillance when ASFV live-attenuated virus-based vaccines are used in the field for ASF control in endemic countries.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Vírus da Febre Suína Africana/patogenicidade , Vírus da Febre Suína Africana/classificação , Febre Suína Africana/virologia , Suínos , Vietnã , Viremia , Genoma Viral , Genótipo , Deleção de Sequência , Eliminação de Partículas Virais , Filogenia
2.
Microbiol Spectr ; 12(4): e0358423, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38436242

RESUMO

We conducted an in silico analysis to better understand the potential factors impacting host adaptation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in white-tailed deer, humans, and mink due to the strong evidence of sustained transmission within these hosts. Classification models trained on single nucleotide and amino acid differences between samples effectively identified white-tailed deer-, human-, and mink-derived SARS-CoV-2. For example, the balanced accuracy score of Extremely Randomized Trees classifiers was 0.984 ± 0.006. Eighty-eight commonly identified predictive mutations are found at sites under strong positive and negative selective pressure. A large fraction of sites under selection (86.9%) or identified by machine learning (87.1%) are found in genes other than the spike. Some locations encoded by these gene regions are predicted to be B- and T-cell epitopes or are implicated in modulating the immune response suggesting that host adaptation may involve the evasion of the host immune system, modulation of the class-I major-histocompatibility complex, and the diminished recognition of immune epitopes by CD8+ T cells. Our selection and machine learning analysis also identified that silent mutations, such as C7303T and C9430T, play an important role in discriminating deer-derived samples across multiple clades. Finally, our investigation into the origin of the B.1.641 lineage from white-tailed deer in Canada discovered an additional human sequence from Michigan related to the B.1.641 lineage sampled near the emergence of this lineage. These findings demonstrate that machine-learning approaches can be used in combination with evolutionary genomics to identify factors possibly involved in the cross-species transmission of viruses and the emergence of novel viral lineages.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible virus capable of infecting and establishing itself in human and wildlife populations, such as white-tailed deer. This fact highlights the importance of developing novel ways to identify genetic factors that contribute to its spread and adaptation to new host species. This is especially important since these populations can serve as reservoirs that potentially facilitate the re-introduction of new variants into human populations. In this study, we apply machine learning and phylogenetic methods to uncover biomarkers of SARS-CoV-2 adaptation in mink and white-tailed deer. We find evidence demonstrating that both non-synonymous and silent mutations can be used to differentiate animal-derived sequences from human-derived ones and each other. This evidence also suggests that host adaptation involves the evasion of the immune system and the suppression of antigen presentation. Finally, the methods developed here are general and can be used to investigate host adaptation in viruses other than SARS-CoV-2.


Assuntos
COVID-19 , Cervos , Animais , Humanos , SARS-CoV-2/genética , Filogenia , Vison
3.
Microbiol Resour Announc ; 13(4): e0129523, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38411070

RESUMO

Two cat nasal swabs from Canada's earliest confirmed SARS-CoV-2 positive domestic cats were sequenced to over 99% SARS-CoV-2 genome coverage. One cat had lineage A.23.1 SARS-CoV-2 not reported before in animals. Both sequences have multiple spike gene mutations and clustered closely with human-derived sequences in the global SARS-CoV-2 phylogenetic tree.

4.
Emerg Microbes Infect ; 13(1): 2302103, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38189080

RESUMO

Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) is a tick-borne, risk group 4 pathogen that often causes a severe haemorrhagic disease in humans (CCHF) with high case fatality rates. The virus is believed to be maintained in a tick-vertebrate-tick ecological cycle involving numerous wild and domestic animal species; however the biology of CCHFV infection in these animals remains poorly understood. Here, we experimentally infect domestic sheep with CCHFV Kosovo Hoti, a clinical isolate representing high pathogenicity to humans and increasingly utilized in current research. In the absence of prominent clinical signs, the infection leads to an acute viremia and coinciding viral shedding, fever and markers for potential impairment in liver and kidney functions. A number of host responses distinguish the subclinical infection in sheep versus fatal infection in humans. These include an early reduction of neutrophil recruitment and its chemoattractant, IL-8, in the blood stream of infected sheep, whereas neutrophil infiltration and elevated IL-8 are features of fatal CCHFV infections reported in immunodeficient mice and humans. Several inflammatory cytokines that correlate with poor disease outcomes in humans and have potential to cause vascular dysfunction, a primary hallmark of severe CCHF, are down-regulated or restricted from increasing in sheep. Of particular interest, the detection of CCHFV RNA (including full-length genome) in a variety of sheep tissues long after the acute phase of infection indicates a widespread viral dissemination in the host and suggests a potentially long-term persisting impact of CCHFV infection. These findings reveal previously unrecognized aspects of CCHFV biology in animals.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Carrapatos , Humanos , Animais , Camundongos , Ovinos , Febre Hemorrágica da Crimeia/diagnóstico , Carneiro Doméstico/genética , RNA Viral/genética , Kosovo , Interleucina-8
5.
Viruses ; 15(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38140549

RESUMO

Classical swine fever (CSF) is a highly contagious transboundary viral disease of domestic and wild pigs. Despite mass vaccination and continuous eradication programs, CSF remains endemic in Asia, some countries in Europe, the Caribbean and South America. Since June 2013, Northern Colombia has reported 137 CSF outbreaks, mostly in backyard production systems with low vaccination coverage. The purpose of this study was to characterize the virus responsible for the outbreak. Phylogenetic analysis based on the full-length E2 sequence shows that the virus is closely related to CSF virus (CSFV) genotype 2.6 strains circulating in Southeast Asia. The pathotyping experiment suggests that the virus responsible is a moderately virulent strain. The 190 nucleotide stretch of the E2 hypervariable region of these isolates also shows high similarity to the CSFV isolates from Colombia in 2005 and 2006, suggesting a common origin for the CSF outbreaks caused by genotype 2.6 strains. The emergence of genotype 2.6 in Colombia suggests a potential transboundary spread of CSFV from Asia to the Americas, complicating the ongoing CSF eradication efforts in the Americas, and emphasizes the need for continuous surveillance in the region.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vacinas Virais , Suínos , Animais , Colômbia/epidemiologia , Filogenia , Sus scrofa , Surtos de Doenças , Genótipo
6.
iScience ; 26(11): 108319, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026171

RESUMO

White-tailed deer (WTD) are susceptible to SARS-CoV-2 and represent an important species for surveillance. Samples from WTD (n = 258) collected in November 2021 from Québec, Canada were analyzed for SARS-CoV-2 RNA. We employed viral genomics and host transcriptomics to further characterize infection and investigate host response. We detected Delta SARS-CoV-2 (B.1.617.2) in WTD from the Estrie region; sequences clustered with human sequences from October 2021 from Vermont, USA, which borders this region. Mutations in the S-gene and a deletion in ORF8 were detected. Host expression patterns in SARS-CoV-2 infected WTD were associated with the innate immune response, including signaling pathways related to anti-viral, pro- and anti-inflammatory signaling, and host damage. We found limited correlation between genes associated with innate immune response from human and WTD nasal samples, suggesting differences in responses to SARS-CoV-2 infection. Our findings provide preliminary insights into host response to SARS-CoV-2 infection in naturally infected WTD.

7.
Viruses ; 15(9)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37766243

RESUMO

In December 2022 and January 2023, we isolated clade 2.3.4.4b H5N1 high-pathogenicity avian influenza (HPAI) viruses from six American crows (Corvus brachyrhynchos) from Prince Edward Island and a red fox (Vulpes vulpes) from Newfoundland, Canada. Using full-genome sequencing and phylogenetic analysis, these viruses were found to fall into two distinct phylogenetic clusters: one group containing H5N1 viruses that had been circulating in North and South America since late 2021, and the other one containing European H5N1 viruses reported in late 2022. The transatlantic re-introduction for the second time by pelagic/Icelandic bird migration via the same route used during the 2021 incursion of Eurasian origin H5N1 viruses into North America demonstrates that migratory birds continue to be the driving force for transcontinental dissemination of the virus. This new detection further demonstrates the continual long-term threat of H5N1 viruses for poultry and mammals and the subsequent impact on various wild bird populations wherever these viruses emerge. The continual emergence of clade 2.3.4.4b H5Nx viruses requires vigilant surveillance in wild birds, particularly in areas of the Americas, which lie within the migratory corridors for long-distance migratory birds originating from Europe and Asia. Although H5Nx viruses have been detected at higher rates in North America since 2021, a bidirectional flow of H5Nx genes of American origin viruses to Europe has never been reported. In the future, coordinated and systematic surveillance programs for HPAI viruses need to be launched between European and North American agencies.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Virus da Influenza A Subtipo H5N1/genética , Filogenia , Canadá/epidemiologia , Aves , Europa (Continente)/epidemiologia , Raposas , Influenza Aviária/epidemiologia
8.
Emerg Infect Dis ; 29(10): 2145-2149, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735770

RESUMO

Wholly Eurasian highly pathogenic avian influenza H5N1 clade 2.3.4.4b virus was isolated from 2 free-ranging black bears with meningoencephalitis in Quebec, Canada. We found that isolates from both animals had the D701N mutation in the polymerase basic 2 gene, previously known to promote adaptation of H5N1 viruses to mammal hosts.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Ursidae , Animais , Humanos , Quebeque/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Canadá
9.
Can Vet J ; 64(6): 524-528, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37265810

RESUMO

Adenoviral hemorrhagic disease (AHD), caused by deer atadenovirus A (OdAdV-1), affects captive and free-ranging cervids across North America. Here we present a case of AHD in a 6-month-old female elk calf from a farm in Alberta. Histopathology revealed multisystemic vasculitis with endothelial intranuclear inclusion bodies, pulmonary hemorrhage, and small intestinal hemorrhage characteristic of the acute systemic form of AHD. Immunohistochemistry was positive for OdAdV-1, confirming the diagnosis. Whole-genome sequencing of the virus was conducted for phylogenetic comparison. This is the 1st reported case of AHD in a farmed elk in Canada and the 1st reported case in an elk in Alberta. Key clinical message: Adenoviral hemorrhagic disease (AHD) is an emerging disease that should be investigated as a top differential when diagnosticians and veterinarians encounter young cervids found dead with pulmonary edema or hemorrhage and/or hemorrhagic enteropathy.


Maladie hémorragique adénovirale chez un wapiti d'élevage (Cervus canadensis) en Alberta, Canada. La maladie hémorragique adénovirale (AHD), causée par l'atadénovirus A du cerf (OdAdV-1), affecte les cervidés en captivité et en liberté partout en Amérique du Nord. Nous présentons ici un cas d'AHD chez un wapiti femelle de 6 mois d'une ferme en Alberta. L'histopathologie a révélé une vascularite multi-systémique avec des corps d'inclusion intranucléaires endothéliaux, une hémorragie pulmonaire et une hémorragie de l'intestin grêle caractéristiques de la forme systémique aiguë de l'AHD. L'immunohistochimie était positive pour OdAdV-1, confirmant le diagnostic. Le séquençage du génome entier du virus a été réalisé à des fins de comparaison phylogénétique. Il s'agit du premier cas signalé d'AHD chez un wapiti d'élevage au Canada et du premier cas signalé chez un wapiti en Alberta.Message clinique clé :La maladie hémorragique adénovirale (AHD) est une maladie émergente qui devrait être investiguée comme un diagnostic différentiel important lorsque les diagnosticiens et les vétérinaires rencontrent de jeunes cervidés trouvés morts avec un œdème pulmonaire ou une hémorragie et/ou une entéropathie hémorragique.(Traduit par Dr Serge Messier).


Assuntos
Cervos , Animais , Feminino , Alberta/epidemiologia , Filogenia , Fazendas , Hemorragia/veterinária
10.
Viruses ; 15(4)2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-37112895

RESUMO

African swine fever (ASF) is a high-consequence transboundary hemorrhagic fever of swine. It continues to spread across the globe causing socio-economic issues and threatening food security and biodiversity. In 2020, Nigeria reported a major ASF outbreak, killing close to half a million pigs. Based on the partial sequences of the genes B646L (p72) and E183L (p54), the virus responsible for the outbreak was identified as an African swine fever virus (ASFV) p72 genotype II. Here, we report further characterization of ASFV RV502, one of the isolates obtained during the outbreak. The whole genome sequence of this virus revealed a deletion of 6535 bp between the nucleotide positions 11,760-18,295 of the genome, and an apparent reverse complement duplication of the 5' end of the genome at the 3' end. Phylogenetically, ASFV RV502 clustered together with ASFV MAL/19/Karonga and ASFV Tanzania/Rukwa/2017/1 suggesting that the virus responsible for the 2020 outbreak in Nigeria has a South-eastern African origin.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Sus scrofa , Nigéria/epidemiologia , Análise de Sequência de DNA , Filogenia , Genótipo , Surtos de Doenças
11.
Sci Rep ; 13(1): 3703, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878942

RESUMO

The complete genome of a novel torque teno virus species (Torque teno equus virus 2 (TTEqV2) isolate Alberta/2018) was obtained by high-throughput sequencing (HTS) of nucleic acid extracted from the lung and liver tissue of a Quarter Horse gelding that died of nonsuppurative encephalitis in Alberta, Canada. The 2805 nucleotide circular genome is the first complete genome from the Mutorquevirus genus and has been approved as a new species by the International Committee on Taxonomy of Viruses. The genome contains several characteristic features of torque teno virus (TTV) genomes, including an ORF1 encoding a putative 631 aa capsid protein with an arginine-rich N-terminus, several rolling circle replication associated amino acid motifs, and a downstream polyadenylation signal. A smaller overlapping ORF2 encodes a protein with an amino acid motif (WX7HX3CXCX5H) which, in general, is highly conserved in TTVs and anelloviruses. The UTR contains two GC-rich tracts, two highly conserved 15 nucleotide sequences, and what appears to be an atypical TATA-box sequence also observed in two other TTV genera. Codon usage analysis of TTEqV2 and 11 other selected anelloviruses from five host species revealed a bias toward adenine ending (A3) codons in the anelloviruses, while in contrast, A3 codons were observed at a low frequency in horse and the four other associated host species examined. Phylogenetic analysis of TTV ORF1 sequences available to date shows TTEqV2 clusters with the only other currently reported member of the Mutorquevirus genus, Torque teno equus virus 1 (TTEqV1, KR902501). Genome-wide pairwise alignment of TTEqV2 and TTEqV1 shows the absence of several highly conserved TTV features within the UTR of TTEqV1, suggesting it is incomplete and TTEqV2 is the first complete genome within the genus Mutorquevirus.


Assuntos
Anelloviridae , Torque teno virus , Cavalos , Animais , Masculino , Filogenia , Alberta , Genômica
12.
Emerg Microbes Infect ; 12(1): 2186608, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36880345

RESUMO

The GsGd lineage (A/goose/Guangdong/1/1996) H5N1 virus was introduced to Canada in 2021/2022 through the Atlantic and East Asia-Australasia/Pacific flyways by migratory birds. This was followed by unprecedented outbreaks affecting domestic and wild birds, with spillover into other animals. Here, we report sporadic cases of H5N1 in 40 free-living mesocarnivore species such as red foxes, striped skunks, and mink in Canada. The clinical presentations of the disease in mesocarnivores were consistent with central nervous system infection. This was supported by the presence of microscopic lesions and the presence of abundant IAV antigen by immunohistochemistry. Some red foxes that survived clinical infection developed anti-H5N1 antibodies. Phylogenetically, the H5N1 viruses from the mesocarnivore species belonged to clade 2.3.4.4b and had four different genome constellation patterns. The first group of viruses had wholly Eurasian (EA) genome segments. The other three groups were reassortant viruses containing genome segments derived from both North American (NAm) and EA influenza A viruses. Almost 17 percent of the H5N1 viruses had mammalian adaptive mutations (E627 K, E627V and D701N) in the polymerase basic protein 2 (PB2) subunit of the RNA polymerase complex. Other mutations that may favour adaptation to mammalian hosts were also present in other internal gene segments. The detection of these critical mutations in a large number of mammals within short duration after virus introduction inevitably highlights the need for continually monitoring and assessing mammalian-origin H5N1 clade 2.3.4.4b viruses for adaptive mutations, which potentially can facilitate virus replication, horizontal transmission and posing pandemic risks for humans.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Humanos , Virus da Influenza A Subtipo H5N1/genética , Raposas , Aves , Canadá/epidemiologia , Mutação , Filogenia
14.
Sci Rep ; 12(1): 21920, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536037

RESUMO

Mosquitoes are important vectors for human and animal diseases. Genetic markers, like the mitochondrial COI gene, can facilitate the taxonomic classification of disease vectors, vector-borne disease surveillance, and prevention. Within the control region (CR) of the mitochondrial genome, there exists a highly variable and poorly studied non-coding AT-rich area that contains the origin of replication. Although the CR hypervariable region has been used for species differentiation of some animals, few studies have investigated the mosquito CR. In this study, we analyze the mosquito mitogenome CR sequences from 125 species and 17 genera. We discovered four conserved motifs located 80 to 230 bp upstream of the 12S rRNA gene. Two of these motifs were found within all 392 Anopheles (An.) CR sequences while the other two motifs were identified in all 37 Culex (Cx.) CR sequences. However, only 3 of the 304 non-Culicidae Dipteran mitogenome CR sequences contained these motifs. Interestingly, the short motif found in all 37 Culex sequences had poly-A and poly-T stretch of similar length that is predicted to form a stable hairpin. We show that supervised learning using the frequency chaos game representation of the CR can be used to differentiate mosquito genera from their dipteran relatives.


Assuntos
Anopheles , Culex , Genoma Mitocondrial , Animais , Humanos , Mosquitos Vetores/genética , Culex/genética , Anopheles/genética , Vetores de Doenças
15.
Nat Microbiol ; 7(12): 2011-2024, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36357713

RESUMO

Wildlife reservoirs of broad-host-range viruses have the potential to enable evolution of viral variants that can emerge to infect humans. In North America, there is phylogenomic evidence of continual transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to white-tailed deer (Odocoileus virginianus) through unknown means, but no evidence of transmission from deer to humans. We carried out an observational surveillance study in Ontario, Canada during November and December 2021 (n = 300 deer) and identified a highly divergent lineage of SARS-CoV-2 in white-tailed deer (B.1.641). This lineage is one of the most divergent SARS-CoV-2 lineages identified so far, with 76 mutations (including 37 previously associated with non-human mammalian hosts). From a set of five complete and two partial deer-derived viral genomes we applied phylogenomic, recombination, selection and mutation spectrum analyses, which provided evidence for evolution and transmission in deer and a shared ancestry with mink-derived virus. Our analysis also revealed an epidemiologically linked human infection. Taken together, our findings provide evidence for sustained evolution of SARS-CoV-2 in white-tailed deer and of deer-to-human transmission.


Assuntos
COVID-19 , Cervos , Animais , Humanos , SARS-CoV-2/genética
16.
Front Vet Sci ; 9: 977761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204292

RESUMO

Foot-and-Mouth Disease Virus (FMDV), the causative agent of Foot-and-Mouth Disease, is a highly feared, economically devastating transboundary pathogen. This is due to the virus' extremely contagious nature and its ability to utilize multiple transmission routes. As such, rapid and accurate diagnostic testing is imperative to the control of FMD. Identification of the FMDV serotype is necessary as it provides the foundation for appropriate vaccine selection and aids in outbreak source tracing. With the vast genetic diversity, there is a desperate need to be able to characterize FMDV without relying on prior knowledge of viral serotypes. In this study, the Neptune bioinformatics tool was used to identify genetic signatures specific to each Southern African Territories (SAT) 1, 2 and 3 genomes but exclusionary to the other circulating FMDV serotypes (A, O, Asia1, and the heterologous SAT1, SAT2 and/or SAT3). Identification of these unique genomic regions allowed the design of TaqMan-based real-time reverse transcriptase PCR (rRT-PCR) primer/probe sets for SAT1, SAT2 and SAT3 viruses. These assays were optimized using prototypic FMDV cell culture isolates using the same reagents and thermocycling conditions as the FMDV pan-serotype 3D rRT-PCR assay. Cross-reactivity was evaluated in tandem with the FMDV pan-serotype 3D rRT-PCR utilizing representative strains from FMDV serotypes A, O, Asia1, SAT1, SAT2 and SAT3. The SAT1, SAT2, and SAT3 primer/probe sets were specific for the homologous serotype and exclusionary to all others. SAT1 and SAT3 primer/probe sets were able to detect several topotypes, whereas the SAT2 assay was revealed to be specific for topotype VII. The SAT2 topotype VII specificity was possibly due to the use of sequence data deposited post-2011to design the rRT-PCR primers and probes. Each assay was tested against a panel of 99 bovine tissue samples from Nigeria, where SAT2 topotype VII viruses were correctly identified and no cross-reactivity was exhibited by the SAT1 and 3 assays. These novel SAT1, SAT3 and SAT2 topotype VII rRT-PCR assays have the potential to detect and differentiate circulating FMD SAT viruses.

17.
Microbiol Resour Announc ; 11(10): e0066222, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36129291

RESUMO

A complete 30,616-nucleotide Cervid atadenovirus A genome was determined from the tissues of black-tailed deer that had died in 2020 in British Columbia, Canada. Unique, nonsynonymous single-nucleotide polymorphisms in the E1B, Iva2, and E4.3 coding regions and deletions totaling 74 nucleotides that were not observed in moose and red deer isolates were present.

18.
Virus Evol ; 8(2): veac077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105667

RESUMO

From 2016 to 2020, high pathogenicity avian influenza (HPAI) H5 viruses circulated in Asia, Europe, and Africa, causing waves of infections and the deaths of millions of wild and domestic birds and presenting a zoonotic risk. In late 2021, H5N1 HPAI viruses were isolated from poultry in Canada and also retrospectively from a great black-backed gull (Larus marinus), raising concerns that the spread of these viruses to North America was mediated by migratory wild bird populations. In February and April 2022, H5N1 HPAI viruses were isolated from a bald eagle (Haliaeetus leucocephalus) and broiler chickens in British Columbia, Canada. Phylogenetic analysis showed that the virus from bald eagle was genetically related to H5N1 HPAI virus isolated in Hokkaido, Japan, in January 2022. The virus identified from broiler chickens was a reassortant H5N1 HPAI virus with unique constellation genome segments containing PB2 and NP from North American lineage LPAI viruses, and the remaining gene segments were genetically related to the original Newfoundland-like H5N1 HPAI viruses detected in November and December 2021 in Canada. This is the first report of H5 HPAI viruses' introduction to North America from the Pacific and the North Atlantic-linked flyways and highlights the expanding risk of genetically distinct virus introductions from different geographical locations and the potential for local reassortment with both the American lineage LPAI viruses in wild birds and with both Asian-like and European-like H5 HPAI viruses. We also report the presence of some amino acid substitutions across each segment that might contribute to the replicative efficiency of these viruses in mammalian host, evade adaptive immunity, and pose a potential zoonotic risk.

19.
Emerg Infect Dis ; 28(7): 1480-1484, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35731188

RESUMO

We isolated a novel reassortant influenza A(H10N7) virus from a harbor seal in British Columbia, Canada, that died from bronchointerstitial pneumonia. The virus had unique genome constellations involving lineages from North America and Eurasia and polymerase basic 2 segment D701N mutation, associated with adaptation to mammals.


Assuntos
Vírus da Influenza A Subtipo H10N7 , Influenza Aviária , Influenza Humana , Infecções por Orthomyxoviridae , Phoca , Animais , Colúmbia Britânica/epidemiologia , Vírus de DNA , Humanos , Vírus da Influenza A Subtipo H10N7/genética , Influenza Humana/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Filogenia , Vírus Reordenados/genética
20.
Sci Rep ; 11(1): 21657, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737324

RESUMO

Cell lines are widely used in research and for diagnostic tests and are often shared between laboratories. Lack of cell line authentication can result in the use of contaminated or misidentified cell lines, potentially affecting the results from research and diagnostic activities. Cell line authentication and contamination detection based on metagenomic high-throughput sequencing (HTS) was tested on DNA and RNA from 63 cell lines available at the Canadian Food Inspection Agency's National Centre for Foreign Animal Disease. Through sequence comparison of the cytochrome c oxidase subunit 1 (COX1) gene, the species identity of 53 cell lines was confirmed, and eight cell lines were found to show a greater pairwise nucleotide identity in the COX1 sequence of a different species within the same expected genus. Two cell lines, LFBK-αvß6 and SCP-HS, were determined to be composed of cells from a different species and genus. Mycoplasma contamination was not detected in any cell lines. However, several expected and unexpected viral sequences were detected, including part of the classical swine fever virus genome in the IB-RS-2 Clone D10 cell line. Metagenomics-based HTS is a useful laboratory QA tool for cell line authentication and contamination detection that should be conducted regularly.


Assuntos
Autenticação de Linhagem Celular/métodos , Linhagem Celular/classificação , Ciclo-Oxigenase 1/genética , Animais , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mycoplasma/genética , Reação em Cadeia da Polimerase/métodos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...