Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Space Sci Rev ; 219(8): 81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046182

RESUMO

The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission's science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa's habitability, is a complex task and is guided by the mission's Habitability Assessment Board (HAB).

2.
Proc Natl Acad Sci U S A ; 120(43): e2310223120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844243

RESUMO

Physical laws-such as the laws of motion, gravity, electromagnetism, and thermodynamics-codify the general behavior of varied macroscopic natural systems across space and time. We propose that an additional, hitherto-unarticulated law is required to characterize familiar macroscopic phenomena of our complex, evolving universe. An important feature of the classical laws of physics is the conceptual equivalence of specific characteristics shared by an extensive, seemingly diverse body of natural phenomena. Identifying potential equivalencies among disparate phenomena-for example, falling apples and orbiting moons or hot objects and compressed springs-has been instrumental in advancing the scientific understanding of our world through the articulation of laws of nature. A pervasive wonder of the natural world is the evolution of varied systems, including stars, minerals, atmospheres, and life. These evolving systems appear to be conceptually equivalent in that they display three notable attributes: 1) They form from numerous components that have the potential to adopt combinatorially vast numbers of different configurations; 2) processes exist that generate numerous different configurations; and 3) configurations are preferentially selected based on function. We identify universal concepts of selection-static persistence, dynamic persistence, and novelty generation-that underpin function and drive systems to evolve through the exchange of information between the environment and the system. Accordingly, we propose a "law of increasing functional information": The functional information of a system will increase (i.e., the system will evolve) if many different configurations of the system undergo selection for one or more functions.

3.
Space Sci Rev ; 219(6): 46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636325

RESUMO

The Galileo mission to Jupiter revealed that Europa is an ocean world. The Galileo magnetometer experiment in particular provided strong evidence for a salty subsurface ocean beneath the ice shell, likely in contact with the rocky core. Within the ice shell and ocean, a number of tectonic and geodynamic processes may operate today or have operated at some point in the past, including solid ice convection, diapirism, subsumption, and interstitial lake formation. The science objectives of the Europa Clipper mission include the characterization of Europa's interior; confirmation of the presence of a subsurface ocean; identification of constraints on the depth to this ocean, and on its salinity and thickness; and determination of processes of material exchange between the surface, ice shell, and ocean. Three broad categories of investigation are planned to interrogate different aspects of the subsurface structure and properties of the ice shell and ocean: magnetic induction, subsurface radar sounding, and tidal deformation. These investigations are supplemented by several auxiliary measurements. Alone, each of these investigations will reveal unique information. Together, the synergy between these investigations will expose the secrets of the Europan interior in unprecedented detail, an essential step in evaluating the habitability of this ocean world.

4.
Nature ; 618(7963): 43-46, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36972686

RESUMO

Atmospheric metal enrichment (that is, elements heavier than helium, also called 'metallicity') is a key diagnostic of the formation of giant planets1-3. The giant planets of the Solar System show an inverse relationship between mass and both their bulk metallicities and atmospheric metallicities. Extrasolar giant planets also display an inverse relationship between mass and bulk metallicity4. However, there is significant scatter in the relationship and it is not known how atmospheric metallicity correlates with either planet mass or bulk metallicity. Here we show that the Saturn-mass exoplanet HD 149026b (refs. 5-9) has an atmospheric metallicity 59-276 times solar (at 1σ), which is greater than Saturn's atmospheric metallicity of roughly 7.5 times solar10 at more than 4σ confidence. This result is based on modelling CO2 and H2O absorption features in the thermal emission spectrum of the planet measured by the James Webb Space Telescope. HD 149026b is the most metal-rich giant planet known, with an estimated bulk heavy element abundance of 66 ± 2% by mass11,12. We find that the atmospheric metallicities of both HD 149026b and the Solar System giant planets are more correlated with bulk metallicity than planet mass.

5.
Astrobiology ; 22(9): 1047-1060, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35972349

RESUMO

Landed missions to icy worlds with a subsurface liquid water ocean must meet planetary protection requirements and ensure a sufficiently small likelihood of any microorganism-bearing part of the landed element reaching the ocean. A higher bound on this likelihood is set by the potential for radioisotope thermoelectric generator (RTG) power sources, the hottest possible landed element, to melt through the ice shell and reach the ocean. In this study, we quantify this potential as a function of three key parameters: surface temperature, ice shell thickness (i.e., heat flux through the shell), and thickness of a porous (insulating) snow or regolith cover. Although the model we describe can be applied to any ocean world, we present results in the context of a landed mission concept to the south polar terrain of Saturn's moon Enceladus. In this particular context, we discuss planetary protection considerations for landing site selection. The likelihood of forward microbial contamination of Enceladus' ocean by an RTG-powered landed mission can be made sufficiently low to not undermine compliance with the planetary protection policy.


Assuntos
Meio Ambiente Extraterreno , Gelo , Oceanos e Mares , Planetas , Radioisótopos
6.
Astrobiology ; 22(6): 685-712, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35290745

RESUMO

Cassini revealed that Saturn's Moon Enceladus hosts a subsurface ocean that meets the accepted criteria for habitability with bio-essential elements and compounds, liquid water, and energy sources available in the environment. Whether these conditions are sufficiently abundant and collocated to support life remains unknown and cannot be determined from Cassini data. However, thanks to the plume of oceanic material emanating from Enceladus' south pole, a new mission to Enceladus could search for evidence of life without having to descend through kilometers of ice. In this article, we outline the science motivations for such a successor to Cassini, choosing the primary science goal to be determining whether Enceladus is inhabited and assuming a resource level equivalent to NASA's Flagship-class missions. We selected a set of potential biosignature measurements that are complementary and orthogonal to build a robust case for any life detection result. This result would be further informed by quantifications of the habitability of the environment through geochemical and geophysical investigations into the ocean and ice shell crust. This study demonstrates that Enceladus' plume offers an unparalleled opportunity for in situ exploration of an Ocean World and that the planetary science and astrobiology community is well equipped to take full advantage of it in the coming decades.


Assuntos
Saturno , Exobiologia , Meio Ambiente Extraterreno/química , Gelo , Planetas
8.
Astrobiology ; 21(4): 421-442, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749334

RESUMO

The atomic-scale fragmentation processes involved in molecules undergoing hypervelocity impacts (HVIs; defined as >3 km/s) are challenging to investigate via experiments and still not well understood. This is particularly relevant for the consistency of biosignals from small-molecular-weight neutral organic molecules obtained during solar system robotic missions sampling atmospheres and plumes at hypervelocities. Experimental measurements to replicate HVI effects on neutral molecules are challenging, both in terms of accelerating uncharged species and isolating the multiple transition states over very rapid timescales (<1 ps). Nonequilibrium first-principles-based simulations extend the range of what is possible with experiments. We report on high-fidelity simulations of the fragmentation of small organic biosignature molecules over the range v = 1-12 km/s, and demonstrate that the fragmentation fraction is a sensitive function of velocity, impact angle, molecular structure, impact surface material, and the presence of surrounding ice shells. Furthermore, we generate interpretable fragmentation pathways and spectra for velocity values above the fragmentation thresholds and reveal how organic molecules encased in ice grains, as would likely be the case for those in "ocean worlds," are preserved at even higher velocities than bare molecules. Our results place ideal spacecraft encounter velocities between 3 and 5 km/s for bare amino and fatty acids and within 4-6 km/s for the same species encased in ice grains and predict the onset of organic fragmentation in ice grains at >5 km/s, both consistent with recent experiments exploring HVI effects using impact-induced ionization and analysis via mass spectrometry and from the analysis of Enceladus organics in Cassini Data. From nanometer-sized ice Ih clusters, we establish that HVI energy is dissipated by ice casings through thermal resistance to the impact shock wave and that an upper fragmentation velocity limit exists at which ultimately any organic contents will be cleaved by the surrounding ice-this provides a fundamental path to characterize micrometer-sized ice grains. Altogether, these results provide quantifiable insights to bracket future instrument design and mission parameters.


Assuntos
Ácidos Graxos , Sistema Solar , Atmosfera , Espectrometria de Massas
9.
Geophys Res Lett ; 48(23): e2021GL095756, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35027778

RESUMO

Cloud-tracked wind observations document the role of eddies in putting momentum into the zonal jets. Chemical tracers, lightning, clouds, and temperature anomalies document the rising and sinking in the belts and zones, but questions remain about what drives the flow between the belts and zones. We suggest an additional role for the eddies, which is to generate waves that propagate both up and down from the cloud layer. When the waves break they deposit momentum and thereby replace the friction forces at solid boundaries that enable overturning circulations on terrestrial planets. By depositing momentum of one sign within the cloud layer and momentum of the opposite sign above and below the clouds, the eddies maintain all components of the circulation, including the stacked, oppositely rotating cells between each belt-zone pair, and the zonal jets themselves.

10.
Nature ; 584(7819): 55-58, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760043

RESUMO

Lightning flashes have been observed by a number of missions that visited or flew by Jupiter over the past several decades. Imagery led to a flash rate estimate of about 4 × 10-3 flashes per square kilometre per year (refs. 1,2). The spatial extent of Voyager flashes was estimated to be about 30 kilometres (half-width at half-maximum intensity, HWHM), but the camera was unlikely to have detected the dim outer edges of the flashes, given its weak response to the brightest spectral line of Jovian lightning emission, the 656.3-nanometre Hα line of atomic hydrogen1,3-6. The spatial resolution of some cameras allowed investigators to confirm 22 flashes with HWHM greater than 42 kilometres, and to estimate one with an HWHM of 37 to 45 kilometres (refs. 1,7-9). These flashes, with optical energies comparable to terrestrial 'superbolts'-of (0.02-1.6) × 1010 joules-have been interpreted as tracers of moist convection originating near the 5-bar level of Jupiter's atmosphere (assuming photon scattering from points beneath the clouds)1-3,7,8,10-12. Previous observations of lightning have been limited by camera sensitivity, distance from Jupiter and long exposures (about 680 milliseconds to 85 seconds), meaning that some measurements were probably superimposed flashes reported as one1,2,7,9,10,13. Here we report optical observations of lightning flashes by the Juno spacecraft with energies of approximately 105-108 joules, flash durations as short as 5.4 milliseconds and inter-flash separations of tens of milliseconds, with typical terrestrial energies. The flash rate is about 6.1 × 10-2 flashes per square kilometre per year, more than an order of magnitude greater than hitherto seen. Several flashes are of such small spatial extent that they must originate above the 2-bar level, where there is no liquid water14,15. This implies that multiple mechanisms for generating lightning on Jupiter need to be considered for a full understanding of the planet's atmospheric convection and composition.

11.
Nat Commun ; 11(1): 2829, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546817

RESUMO

Saturn's moon Titan has a methane cycle with clouds, rain, rivers, lakes, and seas; it is the only world known to presently have a volatile cycle akin to Earth's tropospheric water cycle. Anomalously specular radar reflections (ASRR) from Titan's tropical region were observed with the Arecibo Observatory (AO) and Green Bank Telescope (GBT) and interpreted as evidence for liquid surfaces. The Cassini spacecraft discovered lakes/seas on Titan, however, it did not observe lakes/seas at the AO/GBT anomalously specular locations. A satisfactory explanation for the ASRR has been elusive for more than a decade. Here we show that the ASRR originate from one terrain unit, likely paleolakes/paleoseas. Titan observations provide ground-truth in the search for oceans on exoearths and an important lesson is that identifying liquid surfaces by specular reflections requires a stringent definition of specular; we propose a definition for this purpose.

12.
Astrobiology ; 20(10): 1168-1184, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32493049

RESUMO

Identifying and distinguishing between abiotic and biotic signatures of organic molecules such as amino acids and fatty acids is key to the search for life on extraterrestrial ocean worlds. Impact ionization mass spectrometers can potentially achieve this by sampling water ice grains formed from ocean water and ejected by moons such as Enceladus and Europa, thereby exploring the habitability of their subsurface oceans in spacecraft flybys. Here, we extend previous high-sensitivity laser-based analog experiments of biomolecules in pure water to investigate the mass spectra of amino acids and fatty acids at simulated abiotic and biotic relative abundances. To account for the complex background matrix expected to emerge from a salty Enceladean ocean that has been in extensive chemical exchange with a carbonaceous rocky core, other organic and inorganic constituents are added to the biosignature mixtures. We find that both amino acids and fatty acids produce sodiated molecular peaks in salty solutions. Under the soft ionization conditions expected for low-velocity (2-6 km/s) encounters of an orbiting spacecraft with ice grains, the unfragmented molecular spectral signatures of amino acids and fatty acids accurately reflect the original relative abundances of the parent molecules within the source solution, enabling characteristic abiotic and biotic relative abundance patterns to be identified. No critical interferences with other abiotic organic compounds were observed. Detection limits of the investigated biosignatures under Enceladus-like conditions are salinity dependent (decreasing sensitivity with increasing salinity), at the µM or nM level. The survivability and ionization efficiency of large organic molecules during impact ionization appear to be significantly improved when they are protected by a frozen water matrix. We infer from our experimental results that encounter velocities of 4-6 km/s are most appropriate for impact ionization mass spectrometers to detect and discriminate between abiotic and biotic signatures.


Assuntos
Aminoácidos/análise , Exobiologia , Ácidos Graxos/análise , Gelo , Meio Ambiente Extraterreno , Gelo/análise , Planetas Menores , Oceanos e Mares
13.
Nature ; 558(7708): 87-90, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875484

RESUMO

Lightning has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (lightning-generated radio waves) signatures1-6. Jovian lightning is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) lightning7-9. Unlike terrestrial lightning, which emits broadly over the radio spectrum up to gigahertz frequencies10,11, lightning on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range 12 . Strong ionospheric attenuation or a lightning discharge much slower than that on Earth have been suggested as possible explanations for this discrepancy13,14. Here we report observations of Jovian lightning sferics (broadband electromagnetic impulses) at 600 megahertz from the Microwave Radiometer 15 onboard the Juno spacecraft. These detections imply that Jovian lightning discharges are not distinct from terrestrial lightning, as previously thought. In the first eight orbits of Juno, we detected 377 lightning sferics from pole to pole. We found lightning to be prevalent in the polar regions, absent near the equator, and most frequent in the northern hemisphere, at latitudes higher than 40 degrees north. Because the distribution of lightning is a proxy for moist convective activity, which is thought to be an important source of outward energy transport from the interior of the planet16,17, increased convection towards the poles could indicate an outward internal heat flux that is preferentially weighted towards the poles9,16,18. The distribution of moist convection is important for understanding the composition, general circulation and energy transport on Jupiter.

14.
Space Sci Rev ; 2142018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30613113

RESUMO

The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument onboard the Rosetta spacecraft has measured molecular oxygen (O2) in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) in surprisingly high abundances. These measurements mark the first unequivocal detection of O2 in a cometary environment. The large relative abundance of O2 in 67P/C-G despite its high reactivity and low interstellar abundance poses a puzzle for its origin in comet 67P/C-G, and potentially other comets. Since its detection, there have been a number of hypotheses put forward to explain the production and origin of O2 in the comet. These hypotheses cover a wide range of possibilities from various in situ production mechanisms to protosolar nebula and primordial origins. Here, we review the O2 formation mechanisms from the literature, and provide a comprehensive summary of the current state of knowledge of the sources and origin of cometary O2.

15.
Science ; 356(6334): 155-159, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28408597

RESUMO

Saturn's moon Enceladus has an ice-covered ocean; a plume of material erupts from cracks in the ice. The plume contains chemical signatures of water-rock interaction between the ocean and a rocky core. We used the Ion Neutral Mass Spectrometer onboard the Cassini spacecraft to detect molecular hydrogen in the plume. By using the instrument's open-source mode, background processes of hydrogen production in the instrument were minimized and quantified, enabling the identification of a statistically significant signal of hydrogen native to Enceladus. We find that the most plausible source of this hydrogen is ongoing hydrothermal reactions of rock containing reduced minerals and organic materials. The relatively high hydrogen abundance in the plume signals thermodynamic disequilibrium that favors the formation of methane from CO2 in Enceladus' ocean.

16.
J Chem Phys ; 146(10): 104308, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28298101

RESUMO

The atmosphere of Titan, Saturn's largest moon, exhibits interesting UV- and radiation-driven chemistry between nitrogen and methane, resulting in dipolar, nitrile-containing molecules. The assembly and subsequent solvation of such molecules in the alkane lakes and seas found on the moon's surface are of particular interest for investigating the possibility of prebiotic chemistry in Titan's hydrophobic seas. Here we characterize the solvation of acetonitrile, a product of Titan's atmospheric radiation chemistry tentatively detected on Titan's surface [H. B. Niemann et al., Nature 438, 779-784 (2005)], in an alkane mixture estimated to match a postulated composition of the smaller lakes during cycles of active drying and rewetting. Molecular dynamics simulations are employed to determine the potential of mean force of acetonitrile (CH3CN) clusters moving from the alkane vapor into the bulk liquid. We find that the clusters prefer the alkane liquid to the vapor and do not dissociate in the bulk liquid. This opens up the possibility that acetonitrile-based microscopic polar chemistry may be possible in the otherwise nonpolar Titan lakes.

17.
Geophys Res Lett ; 44(15): 7676-7685, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-33100420

RESUMO

The latitude-altitude map of ammonia mixing ratio shows an ammonia-rich zone at 0-5°N, with mixing ratios of 320-340 ppm, extending from 40-60 bars up to the ammonia cloud base at 0.7 bars. Ammonia-poor air occupies a belt from 5-20°N. We argue that downdrafts as well as updrafts are needed in the 0-5°N zone to balance the upward ammonia flux. Outside the 0-20°N region, the belt-zone signature is weaker. At latitudes out to ±40°, there is an ammonia-rich layer from cloud base down to 2 bars which we argue is caused by falling precipitation. Below, there is an ammonia-poor layer with a minimum at 6 bars. Unanswered questions include how the ammonia-poor layer is maintained, why the belt-zone structure is barely evident in the ammonia distribution outside 0-20°N, and how the internal heat is transported through the ammonia-poor layer to the ammonia cloud base.

18.
Proc Natl Acad Sci U S A ; 113(29): 8121-6, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27382167

RESUMO

The chemistry of hydrogen cyanide (HCN) is believed to be central to the origin of life question. Contradictions between Cassini-Huygens mission measurements of the atmosphere and the surface of Saturn's moon Titan suggest that HCN-based polymers may have formed on the surface from products of atmospheric chemistry. This makes Titan a valuable "natural laboratory" for exploring potential nonterrestrial forms of prebiotic chemistry. We have used theoretical calculations to investigate the chain conformations of polyimine (pI), a polymer identified as one major component of polymerized HCN in laboratory experiments. Thanks to its flexible backbone, the polymer can exist in several different polymorphs, which are relatively close in energy. The electronic and structural variability among them is extraordinary. The band gap changes over a 3-eV range when moving from a planar sheet-like structure to increasingly coiled conformations. The primary photon absorption is predicted to occur in a window of relative transparency in Titan's atmosphere, indicating that pI could be photochemically active and drive chemistry on the surface. The thermodynamics for adding and removing HCN from pI under Titan conditions suggests that such dynamics is plausible, provided that catalysis or photochemistry is available to sufficiently lower reaction barriers. We speculate that the directionality of pI's intermolecular and intramolecular =N-H(…)N hydrogen bonds may drive the formation of partially ordered structures, some of which may synergize with photon absorption and act catalytically. Future detailed studies on proposed mechanisms and the solubility and density of the polymers will aid in the design of future missions to Titan.


Assuntos
Cianeto de Hidrogênio/química , Polímeros/química , Meio Ambiente Extraterreno , Estrutura Molecular , Polimerização , Saturno
19.
Sci Adv ; 2(4): e1501781, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27152351

RESUMO

Cometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument onboard Rosetta provide insight into the possible origin of this comet. The observed outgassing pattern indicates that the nucleus of 67P contains crystalline ice, clathrates, and other ices. The observed outgassing is not consistent with gas release from an amorphous ice phase with trapped volatile gases. If the building blocks of 67P were formed from crystalline ices and clathrates, then 67P would have agglomerated from ices that were condensed and altered in the protosolar nebula closer to the Sun instead of more pristine ices originating from the interstellar medium or the outskirts of the disc, where amorphous ice may dominate.


Assuntos
Gelo/análise , Planetas , Sistema Solar , Terpenos/isolamento & purificação , Meio Ambiente Extraterreno , Meteoroides , Terpenos/química
20.
Sci Adv ; 1(1): e1400067, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26601130

RESUMO

The lipid bilayer membrane, which is the foundation of life on Earth, is not viable outside of biology based on liquid water. This fact has caused astronomers who seek conditions suitable for life to search for exoplanets within the "habitable zone," the narrow band in which liquid water can exist. However, can cell membranes be created and function at temperatures far below those at which water is a liquid? We take a step toward answering this question by proposing a new type of membrane, composed of small organic nitrogen compounds, that is capable of forming and functioning in liquid methane at cryogenic temperatures. Using molecular simulations, we demonstrate that these membranes in cryogenic solvent have an elasticity equal to that of lipid bilayers in water at room temperature. As a proof of concept, we also demonstrate that stable cryogenic membranes could arise from compounds observed in the atmosphere of Saturn's moon, Titan, known for the existence of seas of liquid methane on its surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...