Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 138(3): 034703, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23343289

RESUMO

We develop a density functional theory model for the electrochemical growth and dissolution of Li(2)O(2) on various facets, terminations, and sites (terrace, steps, and kinks) of a Li(2)O(2) surface. We argue that this is a reasonable model to describe discharge and charge of Li-O(2) batteries over most of the discharge-charge cycle. Because non-stoichiometric surfaces are potential dependent and since the potential varies during discharge and charge, we study the thermodynamic stability of facets, terminations, and steps as a function of potential. This suggests that different facets, terminations, and sites may dominate in charge relative to those for discharge. We find very low thermodynamic overpotentials (<0.2 V) for both discharge and charge at many sites on the facets studied. These low thermodynamic overpotentials for both discharge and charge are in very good agreement with the low kinetic overpotentials observed in recent experiments. However, there are other predicted paths for discharge/charge that have higher overpotentials, so the phase space available for the electrochemistry opens up with overpotential.


Assuntos
Lítio/química , Oxigênio/química , Teoria Quântica , Técnicas Eletroquímicas , Cinética , Propriedades de Superfície , Termodinâmica
2.
J Phys Chem Lett ; 4(4): 556-60, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26281865

RESUMO

We report the current dependence of the fundamental kinetic overpotentials for Li-O2 discharge and charge (Tafel plots) that define the optimal cycle efficiency in a Li-air battery. Comparison of the unusual experimental Tafel plots obtained in a bulk electrolysis cell with those obtained by first-principles theory is semiquantitative. The kinetic overpotentials for any practical current density are very small, considerably less than polarization losses due to iR drops from the cell impedance in Li-O2 batteries. If only the kinetic overpotentials were present, then a discharge-charge voltaic cycle efficiency of ∼85% should be possible at ∼10 mA/cm(2) superficial current density in a battery of ∼0.1 m(2) total cathode area. We therefore suggest that minimizing the cell impedance is a more important problem than minimizing the kinetic overpotentials to develop higher current Li-air batteries.

3.
J Phys Chem Lett ; 3(8): 997-1001, 2012 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26286562

RESUMO

We use XPS and isotope labeling coupled with differential electrochemical mass spectrometry (DEMS) to show that small amounts of carbonates formed during discharge and charge of Li-O2 cells in ether electrolytes originate from reaction of Li2O2 (or LiO2) both with the electrolyte and with the C cathode. Reaction with the cathode forms approximately a monolayer of Li2CO3 at the C-Li2O2 interface, while reaction with the electrolyte forms approximately a monolayer of carbonate at the Li2O2-electrolyte interface during charge. A simple electrochemical model suggests that the carbonate at the electrolyte-Li2O2 interface is responsible for the large potential increase during charging (and hence indirectly for the poor rechargeability). A theoretical charge-transport model suggests that the carbonate layer at the C-Li2O2 interface causes a 10-100 fold decrease in the exchange current density. These twin "interfacial carbonate problems" are likely general and will ultimately have to be overcome to produce a highly rechargeable Li-air battery.

4.
J Phys Chem Lett ; 3(20): 3043-7, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-26292247

RESUMO

Quantitative differential electrochemical mass spectrometry (DEMS) is used to measure the Coulombic efficiency of discharge and charge [(e(-)/O2)dis and (e(-)/O2)chg] and chemical rechargeability (characterized by the O2 recovery efficiency, OER/ORR) for Li-O2 electrochemistry in a variety of nonaqueous electrolytes. We find that none of the electrolytes studied are truly rechargeable, with OER/ORR <90% for all. Our findings emphasize that neither the overpotential for recharge nor capacity fade during cycling are adequate to assess rechargeability. Coulometry has to be coupled to quantitative measurements of the chemistry to measure the rechargeability truly. We show that rechargeability in the various electrolytes is limited both by chemical reaction of Li2O2 with the solvent and by electrochemical oxidation reactions during charging at potentials below the onset of electrolyte oxidation on an inert electrode. Possible mechanisms are suggested for electrolyte decomposition, which taken together, impose stringent conditions on the liquid electrolyte in Li-O2 batteries.

5.
J Chem Phys ; 135(21): 214704, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22149808

RESUMO

Non-aqueous Li-air or Li-O(2) cells show considerable promise as a very high energy density battery couple. Such cells, however, show sudden death at capacities far below their theoretical capacity and this, among other problems, limits their practicality. In this paper, we show that this sudden death arises from limited charge transport through the growing Li(2)O(2) film to the Li(2)O(2)-electrolyte interface, and this limitation defines a critical film thickness, above which it is not possible to support electrochemistry at the Li(2)O(2)-electrolyte interface. We report both electrochemical experiments using a reversible internal redox couple and a first principles metal-insulator-metal charge transport model to probe the electrical conductivity through Li(2)O(2) films produced during Li-O(2) discharge. Both experiment and theory show a "sudden death" in charge transport when film thickness is ~5 to 10 nm. The theoretical model shows that this occurs when the tunneling current through the film can no longer support the electrochemical current. Thus, engineering charge transport through Li(2)O(2) is a serious challenge if Li-O(2) batteries are ever to reach their potential.

6.
J Am Chem Soc ; 133(45): 18038-41, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21995529

RESUMO

Heterogeneous electrocatalysis has become a focal point in rechargeable Li-air battery research to reduce overpotentials in both the oxygen reduction (discharge) and especially oxygen evolution (charge) reactions. In this study, we show that past reports of traditional cathode electrocatalysis in nonaqueous Li-O(2) batteries were indeed true, but that gas evolution related to electrolyte solvent decomposition was the dominant process being catalyzed. In dimethoxyethane, where Li(2)O(2) formation is the dominant product of the electrochemistry, no catalytic activity (compared to pure carbon) is observed using the same (Au, Pt, MnO(2)) nanoparticles. Nevertheless, the onset potential of oxygen evolution is only slightly higher than the open circuit potential of the cell, indicating conventional oxygen evolution electrocatalysis may be unnecessary.

7.
J Phys Chem Lett ; 2(10): 1161-6, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-26295320

RESUMO

Among the many important challenges facing the development of Li-air batteries, understanding the electrolyte's role in producing the appropriate reversible electrochemistry (i.e., 2Li(+) + O2 + 2e(-) ↔ Li2O2) is critical. Quantitative differential electrochemical mass spectrometry (DEMS), coupled with isotopic labeling of oxygen gas, was used to study Li-O2 electrochemistry in various solvents, including carbonates (typical Li ion battery solvents) and dimethoxyethane (DME). In conjunction with the gas-phase DEMS analysis, electrodeposits formed during discharge on Li-O2 cell cathodes were characterized using ex situ analytical techniques, such as X-ray diffraction and Raman spectroscopy. Carbonate-based solvents were found to irreversibly decompose upon cell discharge. DME-based cells, however, produced mainly lithium peroxide on discharge. Upon cell charge, the lithium peroxide both decomposed to evolve oxygen and oxidized DME at high potentials. Our results lead to two conclusions; (1) coulometry has to be coupled with quantitative gas consumption and evolution data to properly characterize the rechargeability of Li-air batteries, and (2) chemical and electrochemical electrolyte stability in the presence of lithium peroxide and its intermediates is essential to produce a truly reversible Li-O2 electrochemistry.

8.
J Chem Phys ; 132(7): 071101, 2010 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-20170208

RESUMO

We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery. Using density functional theory to estimate the free energy of intermediates during the discharge and charge of the battery, we introduce a reaction free energy diagram and identify possible origins of the overpotential for both processes. We also address the question of electron conductivity through the Li(2)O(2) electrode and show that in the presence of Li vacancies Li(2)O(2) becomes a conductor.

10.
J Chem Phys ; 131(24): 244707, 2009 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-20059099

RESUMO

Direct D atom desorption, as well as associative desorption of D(2) molecules are observed in thermal desorption from D atoms chemisorbed on a C(0001) surface by combining laser induced T-jumps with resonance enhanced multiphoton ionization detection. Bleaching curves suggest that different classes of chemisorbed D atom clusters are present on the initial surface. The energy resolved atomic desorption flux, obtained via time of flight techniques, compares favorably (via detailed balance) with theoretical calculations of atomic sticking. Density functional theory calculations of chemical processes (atomic desorption, atomic diffusion/cluster annealing, and associative desorption) on an extensive set of four atom H(D) clusters chemisorbed on C(0001) provide a good interpretation of the experiments. State and energy resolved D(2) desorption fluxes are compared with previous state averaged results. In combination with density functional theory calculations these measurements reveal a substantial energy loss (>1 eV) to the surface in the associative desorption.

11.
J Chem Phys ; 125(8): 084712, 2006 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-16965044

RESUMO

Highly energetic translational energy distributions are reported for hydrogen and deuterium molecules desorbing associatively from the atomic chemisorption states on highly oriented pyrolytic graphite (HOPG). Laser assisted associative desorption is used to measure the time of flight of molecules desorbing from a hydrogen (deuterium) saturated HOPG surface produced by atomic exposure from a thermal atom source at around 2100 K. The translational energy distributions normal to the surface are very broad, from approximately 0.5 to approximately 3 eV, with a peak at approximately 1.3 eV. The highest translational energy measured is close to the theoretically predicted barrier height. The angular distribution of the desorbing molecules is sharply peaked along the surface normal and is consistent with thermal broadening contributing to energy release parallel to the surface. All results are in qualitative agreement with recent density functional theory calculations suggesting a lowest energy para-type dimer recombination path.

12.
J Chem Phys ; 124(24): 244702, 2006 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-16821991

RESUMO

A three dimensional model based on molecular dynamics with electronic frictions is developed to describe the femtosecond laser induced associative desorption of H2 from Ru(0001)(1 x 1)H. Two molecular coordinates (internuclear separation d and center of mass distance to surface z) and a single phonon coordinate are included in the dynamics. Both the potential energy surface and the electronic friction tensor are calculated by density functional theory so that there are no adjustable parameters in the comparison of this model with the wide range of experiments available for this system. This "first principles" dynamic model gives results in semiquantitative agreement with all experimental results; nonlinear fluence dependence of the yield, isotope effect, two pulse correlation, and energy partitioning. The good agreement of theory with experiment supports a description of this surface femtochemistry in terms of thermalized hot electron induced chemistry with coupling to nuclear coordinates through electronic frictions. By comparing the dynamics with the analytical one dimensional frictional model used previously to fit the experiments for this system, we show that the success of the one dimensional model is based on the rapid intermixing of the z and d coordinates as the H-H climbs out of the adsorption well. However, projecting the three dimensional dynamics onto one dimension introduces a fluence (adsorbate temperature) dependent "entropic" barrier in addition to the potential barrier for the chemistry. This implies that some caution must be used in interpreting activation energies obtained in fitting experiments to the one dimensional model.

13.
J Chem Phys ; 124(9): 91101, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16526837

RESUMO

Dynamical calculations are presented for electronically nonadiabatic vibrational deexcitation of H2 and D2 in scattering from Cu(111). Both the potential energy surface and the nonadiabatic coupling strength were obtained from density functional calculations. The theoretically predicted magnitude of the deexcitation and its dependence on incident energy and isotope are all in agreement with state-to-state scattering experiments [on Cu(100)], and this gives indirect evidence for a nonadiabatic mechanism of the observed deexcitation. Direct evidence could be obtained by measuring the chemicurrent associated with the deexcitation, and its properties have been predicted.

14.
J Chem Phys ; 123(7): 074704, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16229607

RESUMO

Using density-functional theory we calculate friction coefficients describing the damping of nuclear motion into electron-hole pair excitation for the two best-known examples of activated adsorption: H2 dissociation on a Cu(111) surface and N2 dissociation on a Ru(0001) surface. In both cases, the frictions increase dramatically along the reaction path towards the transition state and can be an order of magnitude larger there than typical in the molecularly adsorbed state. In addition, the frictions for N2/Ru(0001) are typically an order of magnitude larger than for H2/Cu(111). We rationalize these trends in terms of the electron structure as the systems proceed to dissociation along the reaction paths. Combining these friction coefficients with the potential-energy surface in quasiclassical dynamics allows first-principles studies of the importance of the breakdown in the Born-Oppenheimer approximation in describing the chemistry. We find that nonadiabatic effects are minimal for the H2/Cu(111) system, but are quite important for N2/Ru(0001).

15.
J Chem Phys ; 122(12): 124701, 2005 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15836403

RESUMO

The influence of surface morphology/porosity on the desorption kinetics of weakly bound species was investigated by depositing D2 on amorphous solid water (ASW) films grown by low temperature vapor deposition under various conditions and with differing thermal histories. A broad distribution of binding energies of the D2 monolayer on nonporous and porous ASW was measured experimentally and correlated by theoretical calculations to differences in the degree of coordination of the adsorbed H2 (D2) to H2O molecules in the ASW depending on the nature of the adsorption site, i.e., surface valleys vs surface peaks in a nanoscale rough film surface. For porous films, the effect of porosity on the desorption kinetics was observed to be a reduction in the desorption rate with film thickness and a change in peak shape. This can be partly explained by fast diffusion into the ASW pore structure via a simple one-dimensional diffusion model and by a change in binding energy statistics with increasing total effective surface area. Furthermore, the D2 desorption kinetics on thermally annealed ASW films were investigated. The main effect was seen to be a reduction in porosity and in the number of highly coordinated binding sites with anneal temperature due to ASW restructuring and pore collapse. These results contribute to the understanding of desorption from porous materials and to the development of correct models for desorption from and catalytic processes on dust grain surfaces in the interstellar medium.

16.
Science ; 302(5652): 1943-6, 2003 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-14671297

RESUMO

Detailed laboratory experiments on the formation of HD from atom recombination on amorphous solid water films show that this process is extremely efficient in a temperature range of 8 to 20 kelvin, temperatures relevant for H2 formation on dust grain surfaces in the interstellar medium (ISM). The fate of the 4.5 electron volt recombination energy is highly dependent on film morphology. These results suggest that grain morphology, rather than the detailed chemical nature of the grain surface, is most important in determining the energy content of the H2 as it is released from the grain into the ISM.


Assuntos
Astronomia , Poeira Cósmica , Hidrogênio/química , Fenômenos Astronômicos , Meio Ambiente Extraterreno , Análise Espectral , Temperatura , Termodinâmica , Água
17.
Science ; 302(5642): 70-1, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-14526070

RESUMO

Vibrational excitations of specific bonds in molecules have been used to enhance the reactivity of the molecules in direct gas-phase reactions. In his Perspective, Luntz highlights a report by Beck et al., who show that such vibrational control may also be possible for catalytic reactions at a surface. The authors demonstrate that differently excited deuterated methane molecules have different dissociation probabilities on a nickel surface, even though the energies of the different molecules are similar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...