Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 401: 130704, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636879

RESUMO

In this study, a SNAD-SBBR process was implemented to achieve ammonia removal and carbon reduction of mature landfill leachate under extremely low dissolved oxygen conditions (0.051 mg/L) for a continuous operation of 266 days. The process demonstrated excellent removal performance, with ammonia nitrogen removal efficiency reaching 100 %, total nitrogen removal efficiency reaching 87.56 %, and an average removal rate of 0.180 kg/(m3·d). The recalcitrant organic compound removal efficiency reached 34.96 %. Nitrogen mass balance analysis revealed that the Anammox process contributed to approximately 98.1 % of the nitrogen removal. Candidatus Kuenenia achieved a relative abundance of 1.49 % in the inner layer of the carrier. In the SNAD-SBBR system, the extremely low DO environment created by the highly efficient partial nitrification stage enabled the coexistence of AnAOB, denitrifying bacteria, and Nitrosomonas, synergistically achieving ammonia removal and carbon reduction. Overall, the SNAD-SBBR process exhibits low-cost and high-efficiency characteristics, holding tremendous potential for landfill leachate treatment.


Assuntos
Carbono , Desnitrificação , Nitrificação , Nitrogênio , Oxigênio , Poluentes Químicos da Água , Oxigênio/metabolismo , Poluentes Químicos da Água/metabolismo , Amônia/metabolismo , Reatores Biológicos , Oxirredução , Biodegradação Ambiental , Purificação da Água/métodos , Bactérias/metabolismo , Anaerobiose
2.
Bioresour Technol ; 399: 130553, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460559

RESUMO

Considering the challenges associated with nitrogen removal from mature landfill leachate, a novel combined continuous-flow process integrating denitrification and partial nitrification-Anammox (PN/A) was developed using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR). In this study, IBBR successfully operated for 343 days, and when influent NH4+-N concentration of mature landfill leachate reached 1258.1 mg/L, an impressive total nitrogen removal efficiency (TNRE) of 93.3 % was achieved, along with a nitrogen removal rate (NRR) of 1.13 kg N/(m3·d). The analysis of the microbial community revealed that Candidatus Kuenenia, the dominant genus responsible for anammox, accounted for 1.7 % (day 265). Additionally, Nitrosomonas, Thauera and Truepera were identified as key contributors to the efficient removal of nitrogen from mature landfill. As a novel nitrogen removal strategy, the practical application of the IBBR system offers novel perspectives on addressing mature landfill leachate.


Assuntos
Nitrificação , Poluentes Químicos da Água , Desnitrificação , Nitrogênio , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Oxirredução , Esgotos
3.
Water Environ Res ; 95(2): e10841, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789674

RESUMO

Partial nitrification-anammox (PN/A) is an energy-efficient technology for nitrogen removal in landfill leachate treatment. Numerous studies have reported successful implementation of the PN/A process and its stable operation under laboratory conditions. One of the primary challenges in PN/A engineering applications is the mass of the seed sludge required for start-up. This study examined the PN/A using a sequence batch reactor (SBR) inoculating a common mixture to treat landfill leachate. After 70 days of operation, the system successfully realized a one-stage PN/A process and maintained a stable ammonium NH 4 + $$ \left({NH}_4^{+}\right) $$ removal efficiency of 97.65% ± 1%, where the effluent of NH 4 + $$ {NH}_4^{+} $$ and nitrate ( NO 3 - $$ {NO}_3^{-} $$ ) were less than 4 ± 1.5 mg L-1 and 10 mg L-1 . In addition, the relative abundances of Ca. Kuenenia and Ca. Brocadia, which are typical anaerobic ammonia-oxidizing bacteria (AnAOB), increased from 0.08% to 3.99% (70 days) and 0.01% to 0.45%, respectively. The relative abundances of ammonia-oxidizing bacteria (AOB) Nitrosomonas and Nitrosospira increased from 0.9% to 2.89% and 0.007% to 0.1% (70 days), respectively. Both AnAOB and AOB are important niches of the system. PRACTITIONER POINTS: The research realized PN/A rapidly by inoculating common mixture sludge. The experiment successfully enriched AnAOB from 0.09% to 3.89% within 70 days. The article revealing the ecological roles of AOB and AnAOB in the landfill leachate treatment.


Assuntos
Desnitrificação , Poluentes Químicos da Água , Amônia , Esgotos , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Oxirredução , Nitrificação , Bactérias , Nitrogênio
4.
Environ Res ; 214(Pt 3): 114090, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970379

RESUMO

Until recently, all known nitrite oxidation occurred in oxygen-rich conditions but now the oxidation of nitrite into nitrate within a low oxygen or anoxic environment has been observed in the ocean. However, this phenomenon is rarely reported in wastewater treatments and its mechanism is unknown. In this study, the partial nitrification and nitrite oxidation were conducted in no enough oxygen in order to remove nitrogen from landfill leachate, save energy, and save money. The results show that the NH4+-N removal efficiency was 99.4%. During phase I of the anaerobic sequential batch reactor (ASBR), no change in Chemical Oxygen Demand (COD) and ammonium were detected. The nitrite concentration decreased from 107 ± 3 mg/L to 0.16 mg/L during 96 h of oxygen- deficiency, while NO3--N increased from 152.5 ± 3 mg/L to 253.65 ± 3 mg/L. The main microorganisms involved in this reaction in the ASBR were Nitrite-Oxidizing Bacteria (NOB), including Nitrospira and Nitrolancea, their relative abundances were 3.56% and 0.13%, respectively. The major NOB (Nitrospira) were confirmed by the further metagenomic binning analysis. This finding shows that nitrite oxidation can occur in oxygen-deficient conditions with specific NOB.


Assuntos
Nitrificação , Poluentes Químicos da Água , Bactérias , Reatores Biológicos/microbiologia , Nitritos , Nitrogênio , Oxirredução , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...