Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 212: 108739, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772168

RESUMO

Zostera marina, a critical keystone marine angiosperm species in coastal seagrass meadows, possesses a photosensitive oxygen evolving complex (OEC). In harsh environments, the photoinactivation of the Z. marina OEC may lead to population declines. However, the factors underlying this photosensitivity remain unclear. Therefore, this study was undertaken to elucidate the elements contributing to Z. marina OEC photosensitivity. Our results demonstrated a gradual decrease in photosystem II performance towards shorter wavelengths, especially blue light and ultraviolet radiation. This phenomenon was characterized by a reduction in Fv/Fm and the rate of O2 evolution, as well as increased fluorescence at 0.3 ms on the OJIP curve. Furthermore, exposure to shorter light wavelengths and longer exposure durations significantly reduced the relative abundance of the OEC peripheral proteins, indicating OEC inactivation. Analyses of light-screening substances revealed that carotenoids, which increased most notably under 420 nm light, might primarily serve as thermal dissipators instead of efficient light filters. In contrast, anthocyanins reacted least to short-wavelength light, in terms of changes to both their content and the expression of genes related to their biosynthesis. Additionally, the levels of aromatically acylated anthocyanins remained consistent across blue-, white-, and red-light treatments. These findings suggest that OEC photoinactivation in Z. marina may be linked to inadequate protection against short-wavelength light, a consequence of insufficient synthesis and aromatic acylation modification of anthocyanins.


Assuntos
Luz , Oxigênio , Complexo de Proteína do Fotossistema II , Zosteraceae , Zosteraceae/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Oxigênio/metabolismo , Antocianinas/metabolismo , Carotenoides/metabolismo
2.
Vet Microbiol ; 290: 109969, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211362

RESUMO

Emerging evidence confirms beneficial properties of probiotics in promoting growth and immunity of farmed chicken. However, the molecular mechanisms underlying the host-microbiome interactions mediated by probiotics are not fully understood. In this study, the internal mechanisms of Lacticaseibacillus chiayiensis-mediated host-microbiome interactions and to elucidate how it promotes host growth were investigated by additional supplementation with L. chiayiensis. We conducted experiments, including intestinal cytokines, digestive enzymes test, intestinal microbiome, metabolome and transcriptome analysis. The results showed that chickens fed L. chiayiensis exhibited higher body weight gain and digestive enzyme activity, and lower pro-inflammatory cytokines, compared to controls. Microbiota sequencing analysis showed that the gut microbiota structure was reshaped with L. chiayiensis supplementation. Specifically, Lactobacillus and Escherichia increased in abundance and Enterococcus, Lactococcus, Corynebacterium, Weissella and Gallicola decreased. In addition, the bacterial community diversity was significantly increased compared to controls. Metabolomic and transcriptomic analyses revealed that higher bile acids and N-acyl amides concentrations and lower carbohydrates concentrations in L. chiayiensis-fed chickens. Meanwhile, the expression of genes related to nutrient transport and absorption in the intestine was upregulated, which reflected the enhanced digestion and absorption of nutrients in chickens supplemented with L. chiayiensis. Moreover, supplementation of L. chiayiensis down-regulated genes involved in inflammation-related, mainly involved in NF-κB signaling pathway and MHC-II mediated antigen presentation process. Cumulatively, these findings highlight that host-microbiota crosstalk enhances the host growth phenotype in two ways: by enhancing bile acid metabolism and digestive enzyme activity, and reducing the occurrence of intestinal inflammation to promote nutrient absorption and maintain intestinal health. This provides a basis for the application of LAB as an alternative to antibiotics in animal husbandry.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Microbioma Gastrointestinal/genética , Galinhas , Lactobacillus , Inflamação/veterinária , Citocinas , Lacticaseibacillus
3.
Antibiotics (Basel) ; 12(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37760653

RESUMO

The growing issue of antibiotic resistance has restrained the utilization of antibiotics as growth enhancers in the poultry industry. Probiotics are candidates for replacing antibiotics in the poultry industry. However, probiotics are strain-specific and their efficacy needs to be investigated before applying them. The aim of this study was to assess the positive effects of Lacticaseibacillus chiayiensis AACE3 on the health and gut microbiota of Nandan Yao chicks. The results showed that compared with the blank control (NC) and aureomycin (PC) groups, L. chiayiensis AACE3 increased final body weight (BW), villus height and improved the ratio of villus height to crypt depth in chicken jejunal tissues. L. chiayiensis AACE3 also increased the activity of hepatic antioxidant enzymes (SOD, CAT and T-AOC) and reduced hepatic oxidative damage (MDA). Furthermore, compared to NC, L. chiayiensis AACE3, the activity of intestinal digestive enzymes (i.e., α-amylase, lipase and trypsin) was increased. L. chiayiensis AACE3 upregulated the production of IgA and IgG and downregulated the production of IL-6, IL-1ß and TNF-α in chicken serum. Moreover, supplementation of L. chiayiensis AACE3 enhances the diversity of gut microbes. At the phylum level, the abundance of Actinobacteriota and Proteobacteria decreased with L. chiayiensis AACE3 supplementation, while the abundance of Verrucomicrobiota and Bacteroidetes increased. At the genus level, there was an increase in the abundance of potential probiotics Akkermansia, Romboutsia, Subdoligranulum, and Lactobacillus. This study confirms that L. chiayiensis AACE3 is an excellent feed additive as an alternative to aureomycin and offers various advantages for the healthy growth of chickens during the brooding period by positively affecting their gut microbiome.

4.
Front Plant Sci ; 13: 792059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283899

RESUMO

Phyllospadix iwatensis, a foundation species of the angiosperm-dominated marine blue carbon ecosystems, has been recognized to be a vulnerable seagrass. Its degradation has previously been reported to be associated with environmental changes and human activities, while there has been a limited number of studies on its inherent characteristics. In this study, both the physiological and molecular biological data indicated that the oxygen-evolving complex (OEC) of P. iwatensis is prone to photoinactivation, which exhibits the light-dependent trait. When exposed to laboratory light intensities similar to typical midday conditions, <10% of the OEC was photoinactivated, and the remaining active OEC was sufficient to maintain normal photosynthetic activity. Moreover, the photoinactivated OEC could fully recover within the same day. However, under harsh light conditions, e.g., light intensities that simulate cloudless sunny neap tide days and continual sunny days, the OEC suffered irreversible photoinactivation, which subsequently resulted in damage to the photosystem II reaction centers and a reduction in the rate of O2 evolution. Furthermore, in situ measurements on a cloudless sunny neap tide day revealed both poor resilience and irreversible photoinactivation of the OEC. Based on these findings, we postulated that the OEC dysfunction induced by ambient harsh light conditions could be an important inherent reason for the degradation of P. iwatensis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...