Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 8(1): 132, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679361

RESUMO

The development of a universal influenza vaccine to elicit broad immune responses is essential in reducing disease burden and pandemic impact. In this study, the mosaic vaccine design strategy and genetic algorithms were utilized to optimize the seasonal influenza A virus (H1N1, H3N2) hemagglutinin (HA) and neuraminidase (NA) antigens, which also contain most potential T-cell epitopes. These mosaic immunogens were then expressed as virus-like particles (VLPs) using the baculovirus expression system. The immunogenicity and protection effectiveness of the mosaic VLPs were compared to the commercial quadrivalent inactivated influenza vaccine (QIV) in the mice model. Strong cross-reactive antibody responses were observed in mice following two doses of vaccination with the mosaic VLPs, with HI titers higher than 40 in 15 of 16 tested strains as opposed to limited cross HI antibody levels with QIV vaccination. After a single vaccination, mice also show a stronger level of cross-reactive antibody responses than the QIV. The QIV vaccinations only elicited NI antibodies to a small number of vaccine strains, and not even strong NI antibodies to its corresponding vaccine components. In contrast, the mosaic VLPs caused robust NI antibodies to all tested seasonal influenza virus vaccine strains. Here, we demonstrated the mosaic vaccines induces stronger cross-reactive antibodies and robust more T-cell responses compared to the QIV. The mosaic VLPs also provided protection against challenges with ancestral influenza A viruses of both H1 and H3 subtypes. These findings indicated that the mosaic VLPs were a promising strategy for developing a broad influenza vaccine in future.

2.
Emerg Microbes Infect ; 12(2): 2246599, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37556756

RESUMO

A single-nucleotide polymorphism (SNP) rs12252-C of interferon-induced transmembrane protein 3 (IFITM3), resulting in a truncated IFITM3 protein lacking 21 N-terminus amino acids, is associated with severe influenza infection in the Chinese population. However, the effect of IFITM3 rs12252-C on influenza vaccination and the underlying mechanism is poorly understood. Here, we constructed a mouse model with a deletion of 21 amino acids at the N-terminus (NΔ21) of IFITM3 and then compared the antibody response between Quadrivalent influenza vaccine (QIV) immunized wild-type (WT) mice and NΔ21 mice. Significantly higher levels of haemagglutination inhibition (HI) titre, neutralizing antibodies (NAb), and immunoglobulin G (IgG) to H1N1, H3N2, B/Victory, and B/Yamagata viruses were observed in NΔ21 mice compared to WT mice. Correspondingly, the numbers of splenic germinal centre (GC) B cells, plasma cells, memory B cells, QIV-specific IgG+ antibody-secreting cells (ASC), and T follicular helper cells (TFH) in NΔ21 mice were higher compared with WT mice. Moreover, the 21-amino-acid deletion caused IFITM3 translocation from the endocytosis compartment to the periphery of cells, which also prevented the degradation of a co-stimulatory molecule of B cell receptor (BCR) CD81 on the cell surface. More importantly, a more interaction was observed between NΔ21 protein and CD81 compared to the interaction between IFITM3 and CD81. Overall, our study revealed a potential mechanism of NΔ21 protein enhancing humoral immune response by relocation to prevent the degradation of CD81, providing insight into SNP affecting influenza vaccination.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos , Imunidade Humoral , Vírus da Influenza A Subtipo H3N2/genética , Imunoglobulina G , Aminoácidos , Anticorpos Antivirais
3.
Nat Commun ; 14(1): 4079, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429936

RESUMO

Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within individual bats, and hence the frequency of virus co-infection and spillover among them. We characterize the mammal-associated viruses in 149 individual bats sampled from Yunnan province, China, using an unbiased meta-transcriptomics approach. This reveals a high frequency of virus co-infection (simultaneous infection of bat individuals by multiple viral species) and spillover among the animals studied, which may in turn facilitate virus recombination and reassortment. Of note, we identify five viral species that are likely to be pathogenic to humans or livestock, based on phylogenetic relatedness to known pathogens or in vitro receptor binding assays. This includes a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV and SARS-CoV-2. In vitro assays indicate that this recombinant virus can utilize the human ACE2 receptor such that it is likely to be of increased emergence risk. Our study highlights the common occurrence of co-infection and spillover of bat viruses and their implications for virus emergence.


Assuntos
COVID-19 , Quirópteros , Coinfecção , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , Filogenia , SARS-CoV-2 , Viroma , China/epidemiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética
4.
J Med Virol ; 95(4): e28727, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185870

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is ongoing and multiple studies have elucidated its pathogenesis, however, the related- microbiome imbalance caused by SARS-CoV-2 is still not clear. In this study, we have comprehensively compared the microbiome composition and associated function alterations in the oropharyngeal swabs of healthy controls and coronavirus disease 2019 (COVID-19) patients with moderate or severe symptoms by metatranscriptomic sequencing. We did observe a reduced microbiome alpha-diversity but significant enrichment of opportunistic microorganisms in patients with COVID-19 compared with healthy controls, and the microbial homeostasis was rebuilt following the recovery of COVID-19 patients. Correspondingly, less functional genes in multiple biological processes and weakened metabolic pathways such as carbohydrate metabolism, energy metabolism were also observed in COVID-19 patients. We only found higher relative abundance of limited genera such as Lachnoanaerobaculum between severe patients and moderate patients while no worthy-noting microbiome diversity and function alteration were observed. Finally, we noticed that the co-occurrence of antibiotic resistance and virulence was closely related to the microbiome alteration caused by SRAS-CoV-2. Overall, our findings demonstrate that microbial dysbiosis may enhance the pathogenesis of SARS-CoV-2 and the antibiotics treatment should be critically considered.


Assuntos
COVID-19 , Microbiota , Humanos , SARS-CoV-2 , Disbiose , Resistência Microbiana a Medicamentos
5.
J Med Virol ; 95(3): e28662, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36905115

RESUMO

Whether the immune imprinting caused by severe acute respiratory syndrome coronavirus (SARS-CoV) affects the efficiency of SARS-CoV-2 vaccination has attracted global concern. Little is known about the dynamic changes of antibody response in SARS convalescents inoculated with three doses of inactivated SARS-CoV-2 vaccine although lack of cross-neutralizing antibody response to SARS-CoV-2 in SARS survivors has been reported. We longitudinally examined the neutralizing antibodies (nAbs) against SARS-CoV and SARS-CoV-2 as well as spikes binding IgA, IgG, IgM, IgG1, and IgG3 antibodies in 9 SARS-recovered donors and 21 SARS-naïve donors. Stably higher nAbs and spike antigens-specific IgA, IgG antibodies against SARS-CoV-2 were observed in SARS-recovered donors compared with SARS-naïve donors during the period with two doses of BBIBP-CorV vaccination. However, the third-dose BBIBP-CorV stimulated a sharply and shortly higher increase of nAbs in SARS-naïve donors than in SARS-recovered donors. It is worth noting that, regardless of prior SARS infection, the Omicron subvariants were found to subvert immune responses. Moreover, certain subvariants such as BA.2, BA.2.75, or BA.5 exhibited a high degree of immune evasion in SARS survivors. Interestingly, BBIBP-CorV recalled higher nAbs against SARS-CoV compared with SARS-CoV-2 in SARS-recovered donors. In SARS survivors, a single dose of inactivated SARS-CoV-2 vaccine provoked immune imprinting for the SARS antigen, providing protection against wild-type SARS-CoV-2, and the earlier variants of concern (VOCs) including Alpha, Beta, Gamma, and Delta but not against Omicron subvariants. As such, it is important to evaluate the type and dosage of SARS-CoV-2 vaccine for SARS survivors.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Vacinas contra COVID-19 , Formação de Anticorpos , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , Imunoglobulina G , Imunoglobulina A , Anticorpos Antivirais
6.
bioRxiv ; 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36451889

RESUMO

Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within bats at the level of individual animals, and hence the frequency of virus co-infection and inter-species transmission. Using an unbiased meta-transcriptomics approach we characterised the mammalian associated viruses present in 149 individual bats sampled from Yunnan province, China. This revealed a high frequency of virus co-infection and species spillover among the animals studied, with 12 viruses shared among different bat species, which in turn facilitates virus recombination and reassortment. Of note, we identified five viral species that are likely to be pathogenic to humans or livestock, including a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV-2 and SARS-CoV, with only five amino acid differences between its receptor-binding domain sequence and that of the earliest sequences of SARS-CoV-2. Functional analysis predicts that this recombinant coronavirus can utilize the human ACE2 receptor such that it is likely to be of high zoonotic risk. Our study highlights the common occurrence of inter-species transmission and co-infection of bat viruses, as well as their implications for virus emergence.

7.
Front Immunol ; 13: 1042406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341358

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes asymptomatic or mild symptoms, even rare hospitalization in children. A major concern is whether the pre-existing antibodies induced by low pathogenic human coronaviruses (LPH-CoVs) in children can cross-react with SARS-CoV-2. To address this unresolved question, we analyzed the pre-existing spike (S)-specific immunoglobin (Ig) G antibodies against LPH-CoVs and the cross-reactive antibodies against SARS-CoV-2 in 658 serum samples collected from children prior to SARS-CoV-2 outbreak. We found that the seroprevalence of these four LPH-CoVs reached 75.84%, and about 24.64% of the seropositive samples had cross-reactive IgG antibodies against the nucleocapsid, S, and receptor binding domain antigens of SARS-CoV-2. Additionally, the re-infections with different LPH-CoVs occurred frequently in children and tended to increase the cross-reactive antibodies against SARS-CoV-2. From the forty-nine serum samples with cross-reactive anti-S IgG antibodies against SARS-CoV-2, we found that seven samples with a median age of 1.4 years old had detected neutralizing activity for the wild-type or mutant SARS-CoV-2 S pseudotypes. Interestingly, all of the seven samples contained anti-S IgG antibodies against HCoV-OC43. Together, these data suggest that children's pre-existing antibodies to LPH-CoVs have limited cross-reactive neutralizing antibodies against SRAS-CoV-2.


Assuntos
COVID-19 , Coronaviridae , Criança , Humanos , Lactente , SARS-CoV-2 , Imunidade Humoral , Estudos Soroepidemiológicos , Anticorpos Antivirais , Imunoglobulina G
8.
Viruses ; 13(10)2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34696392

RESUMO

Bats have been identified as natural reservoirs of a variety of coronaviruses. They harbor at least 19 of the 33 defined species of alpha- and betacoronaviruses. Previously, the bat coronavirus HKU10 was found in two bat species of different suborders, Rousettus leschenaultia and Hipposideros pomona, in south China. However, its geographic distribution and evolution history are not fully investigated. Here, we screened this viral species by a nested reverse transcriptase PCR in our archived samples collected over 10 years from 25 provinces of China and one province of Laos. From 8004 bat fecal samples, 26 were found to be positive for bat coronavirus HKU10 (BtCoV HKU10). New habitats of BtCoV HKU10 were found in the Yunnan, Guangxi, and Hainan Provinces of China, and Louang Namtha Province in Laos. In addition to H. pomona, BtCoV HKU10 variants were found circulating in Aselliscus stoliczkanus and Hipposideros larvatus. We sequenced full-length genomes of 17 newly discovered BtCoV HKU10 strains and compared them with previously published sequences. Our results revealed a much higher genetic diversity of BtCoV HKU10, particularly in spike genes and accessory genes. Besides the two previously reported lineages, we found six novel lineages in their new habitats, three of which were located in Yunnan province. The genotypes of these viruses are closely related to sampling locations based on polyproteins, and correlated to bat species based on spike genes. Combining phylogenetic analysis, selective pressure, and molecular-clock calculation, we demonstrated that Yunnan bats harbor a gene pool of BtCoV HKU10, with H. pomona as a natural reservoir. The cell tropism test using spike-pseudotyped lentivirus system showed that BtCoV HKU10 could enter cells from human and bat, suggesting a potential interspecies spillover. Continuous studies on these bat coronaviruses will expand our understanding of the evolution and genetic diversity of coronaviruses, and provide a prewarning of potential zoonotic diseases from bats.


Assuntos
Alphacoronavirus/genética , Quirópteros/virologia , Alphacoronavirus/patogenicidade , Animais , Sequência de Bases/genética , Evolução Biológica , China , Quirópteros/genética , Coronavirus/genética , Coronavirus/patogenicidade , Infecções por Coronavirus/virologia , Evolução Molecular , Variação Genética/genética , Genoma Viral/genética , Genótipo , Filogenia , Análise de Sequência de DNA/métodos , Proteínas Virais/genética
9.
Proc Natl Acad Sci U S A ; 117(21): 11727-11734, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32376634

RESUMO

A novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) is causing the global coronavirus disease 2019 (COVID-19) pandemic. Understanding how SARS-CoV-2 enters human cells is a high priority for deciphering its mystery and curbing its spread. A virus surface spike protein mediates SARS-CoV-2 entry into cells. To fulfill its function, SARS-CoV-2 spike binds to its receptor human ACE2 (hACE2) through its receptor-binding domain (RBD) and is proteolytically activated by human proteases. Here we investigated receptor binding and protease activation of SARS-CoV-2 spike using biochemical and pseudovirus entry assays. Our findings have identified key cell entry mechanisms of SARS-CoV-2. First, SARS-CoV-2 RBD has higher hACE2 binding affinity than SARS-CoV RBD, supporting efficient cell entry. Second, paradoxically, the hACE2 binding affinity of the entire SARS-CoV-2 spike is comparable to or lower than that of SARS-CoV spike, suggesting that SARS-CoV-2 RBD, albeit more potent, is less exposed than SARS-CoV RBD. Third, unlike SARS-CoV, cell entry of SARS-CoV-2 is preactivated by proprotein convertase furin, reducing its dependence on target cell proteases for entry. The high hACE2 binding affinity of the RBD, furin preactivation of the spike, and hidden RBD in the spike potentially allow SARS-CoV-2 to maintain efficient cell entry while evading immune surveillance. These features may contribute to the wide spread of the virus. Successful intervention strategies must target both the potency of SARS-CoV-2 and its evasiveness.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Internalização do Vírus , Enzima de Conversão de Angiotensina 2 , Linhagem Celular , Humanos , Evasão da Resposta Imune , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Domínios Proteicos , Receptores de Coronavírus , Receptores Virais/química , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Ativação Viral
10.
Nature ; 581(7807): 221-224, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32225175

RESUMO

A novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) recently emerged and is rapidly spreading in humans, causing COVID-191,2. A key to tackling this pandemic is to understand the receptor recognition mechanism of the virus, which regulates its infectivity, pathogenesis and host range. SARS-CoV-2 and SARS-CoV recognize the same receptor-angiotensin-converting enzyme 2 (ACE2)-in humans3,4. Here we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 (engineered to facilitate crystallization) in complex with ACE2. In comparison with the SARS-CoV RBD, an ACE2-binding ridge in SARS-CoV-2 RBD has a more compact conformation; moreover, several residue changes in the SARS-CoV-2 RBD stabilize two virus-binding hotspots at the RBD-ACE2 interface. These structural features of SARS-CoV-2 RBD increase its ACE2-binding affinity. Additionally, we show that RaTG13, a bat coronavirus that is closely related to SARS-CoV-2, also uses human ACE2 as its receptor. The differences among SARS-CoV-2, SARS-CoV and RaTG13 in ACE2 recognition shed light on the potential animal-to-human transmission of SARS-CoV-2. This study provides guidance for intervention strategies that target receptor recognition by SARS-CoV-2.


Assuntos
Betacoronavirus/química , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Receptores Virais/química , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Zoonoses/virologia , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , China/epidemiologia , Quirópteros/virologia , Coronavirus/química , Coronavirus/isolamento & purificação , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Cristalização , Cristalografia por Raios X , Reservatórios de Doenças/virologia , Eutérios/virologia , Humanos , Modelos Moleculares , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Zoonoses/epidemiologia , Zoonoses/transmissão
11.
Viruses ; 11(4)2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022925

RESUMO

Bats have been identified as a natural reservoir of a variety of coronaviruses (CoVs). Several of them have caused diseases in humans and domestic animals by interspecies transmission. Considering the diversity of bat coronaviruses, bat species and populations, we expect to discover more bat CoVs through virus surveillance. In this study, we described a new member of alphaCoV (BtCoV/Rh/YN2012) in bats with unique genome features. Unique accessory genes, ORF4a and ORF4b were found between the spike gene and the envelope gene, while ORF8 gene was found downstream of the nucleocapsid gene. All the putative genes were further confirmed by reverse-transcription analyses. One unique gene at the 3' end of the BtCoV/Rh/YN2012 genome, ORF9, exhibits ~30% amino acid identity to ORF7a of the SARS-related coronavirus. Functional analysis showed ORF4a protein can activate IFN-ß production, whereas ORF3a can regulate NF-κB production. We also screened the spike-mediated virus entry using the spike-pseudotyped retroviruses system, although failed to find any fully permissive cells. Our results expand the knowledge on the genetic diversity of bat coronaviruses. Continuous screening of bat viruses will help us further understand the important role played by bats in coronavirus evolution and transmission.


Assuntos
Alphacoronavirus/classificação , Quirópteros/virologia , Infecções por Coronavirus/veterinária , Variação Genética , Genoma Viral , Proteínas Virais/genética , Alphacoronavirus/isolamento & purificação , Animais , China , Infecções por Coronavirus/virologia , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA
12.
J Infect Dis ; 219(5): 829-835, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30256968

RESUMO

BACKGROUND: The ongoing Middle East respiratory syndrome coronavirus (MERS-CoV) infections pose threats to public health worldwide, making an understanding of MERS pathogenesis and development of effective medical countermeasures (MCMs) urgent. METHODS: We used homozygous (+/+) and heterozygous (+/-) human dipeptidyl peptidase 4 (hDPP4) transgenic mice to study the effect of hDPP4 on MERS-CoV infection. Specifically, we determined values of 50% lethal dose (LD50) of MERS-CoV for the 2 strains of mice, compared and correlated their levels of soluble (s)hDPP4 expression to susceptibility, and explored recombinant (r)shDPP4 as an effective MCM for MERS infection. RESULTS: hDPP4+/+ mice were unexpectedly more resistant than hDPP4+/- mice to MERS-CoV infection, as judged by increased LD50, reduced lung viral infection, attenuated morbidity and mortality, and reduced histopathology. Additionally, the resistance to MERS-CoV infection directly correlated with increased serum shDPP4 and serum virus neutralizing activity. Finally, administration of rshDPP4 led to reduced lung virus titer and histopathology. CONCLUSIONS: Our studies suggest that the serum shDPP4 levels play a role in MERS pathogenesis and demonstrate a potential of rshDPP4 as a treatment option for MERS. Additionally, it offers a validated pair of Tg mice strains for characterizing the effect of shDPP4 on MERS pathogenesis.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/sangue , Resistência à Doença , Expressão Gênica , Coronavírus da Síndrome Respiratória do Oriente Médio/crescimento & desenvolvimento , Animais , Dipeptidil Peptidase 4/genética , Modelos Animais de Doenças , Humanos , Dose Letal Mediana , Camundongos , Camundongos Transgênicos
13.
PLoS Pathog ; 14(4): e1007009, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29684066

RESUMO

As cell-invading molecular machinery, coronavirus spike proteins pose an evolutionary conundrum due to their high divergence. In this study, we determined the cryo-EM structure of avian infectious bronchitis coronavirus (IBV) spike protein from the γ-genus. The trimeric IBV spike ectodomain contains three receptor-binding S1 heads and a trimeric membrane-fusion S2 stalk. While IBV S2 is structurally similar to those from the other genera, IBV S1 possesses structural features that are unique to different other genera, thereby bridging these diverse spikes into an evolutionary spectrum. Specifically, among different genera, the two domains of S1, the N-terminal domain (S1-NTD) and C-terminal domain (S1-CTD), diverge from simpler tertiary structures and quaternary packing to more complex ones, leading to different functions of the spikes in receptor usage and membrane fusion. Based on the above structural and functional comparisons, we propose that the evolutionary spectrum of coronavirus spikes follows the order of α-, δ-, γ-, and ß-genus. This study has provided insight into the evolutionary relationships among coronavirus spikes and deepened our understanding of their structural and functional diversity.


Assuntos
Infecções por Coronavirus/virologia , Microscopia Crioeletrônica/métodos , Evolução Molecular , Vírus da Bronquite Infecciosa/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Infecções por Coronavirus/metabolismo , Células HEK293 , Humanos , Conformação Proteica
14.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669833

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) has represented a human health threat since 2012. Although several MERS-related CoVs that belong to the same species as MERS-CoV have been identified from bats, they do not use the MERS-CoV receptor, dipeptidyl peptidase 4 (DPP4). Here, we screened 1,059 bat samples from at least 30 bat species collected in different regions in south China and identified 89 strains of lineage C betacoronaviruses, including Tylonycteris pachypus coronavirus HKU4, Pipistrellus pipistrelluscoronavirus HKU5, and MERS-related CoVs. We sequenced the full-length genomes of two positive samples collected from the great evening bat, Ia io, from Guangdong Province. The two genomes were highly similar and exhibited genomic structures identical to those of other lineage C betacoronaviruses. While they exhibited genome-wide nucleotide identities of only 75.3 to 81.2% with other MERS-related CoVs, their gene-coding regions were highly similar to their counterparts, except in the case of the spike proteins. Further protein-protein interaction assays demonstrated that the spike proteins of these MERS-related CoVs bind to the receptor DPP4. Recombination analysis suggested that the newly discovered MERS-related CoVs have acquired their spike genes from a DPP4-recognizing bat coronavirus HKU4. Our study provides further evidence that bats represent the evolutionary origins of MERS-CoV.IMPORTANCE Previous studies suggested that MERS-CoV originated in bats. However, its evolutionary path from bats to humans remains unclear. In this study, we discovered 89 novel lineage C betacoronaviruses in eight bat species. We provide evidence of a MERS-related CoV derived from the great evening bat that uses the same host receptor as human MERS-CoV. This virus also provides evidence for a natural recombination event between the bat MERS-related CoV and another bat coronavirus, HKU4. Our study expands the host ranges of MERS-related CoV and represents an important step toward establishing bats as the natural reservoir of MERS-CoV. These findings may lead to improved epidemiological surveillance of MERS-CoV and the prevention and control of the spread of MERS-CoV to humans.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/veterinária , Evolução Molecular , Genoma Viral , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Receptores Virais/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Quirópteros/genética , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Especificidade de Hospedeiro , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Filogenia , Receptores Virais/genética , Homologia de Sequência , Proteínas Virais/genética
16.
Emerg Microbes Infect ; 7(1): 7, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29362446

RESUMO

Zika virus (ZIKV) infection remains a serious health threat due to its close association with congenital Zika syndrome (CZS), which includes microcephaly and other severe birth defects. As no vaccines are available for human use, continuous effort is needed to develop effective and safe vaccines to prevent ZIKV infection. In this study, we constructed three recombinant proteins comprising, respectively, residues 296-406 (E296-406), 298-409 (E298-409), and 301-404 (E301-404) of ZIKV envelope (E) protein domain III (EDIII) fused with a C-terminal Fc of human IgG. Our results demonstrated that E298-409 induced the highest titer of neutralizing antibodies against infection with nine ZIKV strains isolated from different hosts, countries, and time periods, and it maintained long-term anti-ZIKV immunogenicity to induce neutralizing antibodies. Pups born to mice immunized with E298-409 were fully protected against lethal challenge with two epidemic human ZIKV strains, 2015/Honduras (R103451) and 2015/Colombia (FLR). Passive transfer of anti-E298-409 mouse sera protected pups born to naive mice, as well as type I interferon receptor-deficient adult A129 mice, from lethal challenge with human ZIKV strains R103451 and FLR, and this protection was positively correlated with neutralizing antibodies. These data suggest that the critical neutralizing fragment (i.e., a fragment that can induce highly potent neutralizing antibodies against divergent ZIKV strains) of ZIKV EDIII is a good candidate for development as an effective and safe ZIKV subunit vaccine to protect pregnant mothers and their fetuses against ZIKV infection. The E298-409-specific antibodies can be used for passive immunization to prevent ZIKV infection in newborns or immunocompromised adults.


Assuntos
Proteção Cruzada/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Humanos , Imunização Passiva , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Camundongos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/administração & dosagem , Vacinas Virais/administração & dosagem
17.
Virol Sin ; 31(1): 31-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26920708

RESUMO

Since the 2002-2003 severe acute respiratory syndrome (SARS) outbreak prompted a search for the natural reservoir of the SARS coronavirus, numerous alpha- and betacoronaviruses have been discovered in bats around the world. Bats are likely the natural reservoir of alpha- and betacoronaviruses, and due to the rich diversity and global distribution of bats, the number of bat coronaviruses will likely increase. We conducted a surveillance of coronaviruses in bats in an abandoned mineshaft in Mojiang County, Yunnan Province, China, from 2012-2013. Six bat species were frequently detected in the cave: Rhinolophus sinicus, Rhinolophus affinis, Hipposideros pomona, Miniopterus schreibersii, Miniopterus fuliginosus, and Miniopterus fuscus. By sequencing PCR products of the coronavirus RNA-dependent RNA polymerase gene (RdRp), we found a high frequency of infection by a diverse group of coronaviruses in different bat species in the mineshaft. Sequenced partial RdRp fragments had 80%-99% nucleic acid sequence identity with well-characterized Alphacoronavirus species, including BtCoV HKU2, BtCoV HKU8, and BtCoV1, and unassigned species BtCoV HKU7 and BtCoV HKU10. Additionally, the surveillance identified two unclassified betacoronaviruses, one new strain of SARS-like coronavirus, and one potentially new betacoronavirus species. Furthermore, coronavirus co-infection was detected in all six bat species, a phenomenon that fosters recombination and promotes the emergence of novel virus strains. Our findings highlight the importance of bats as natural reservoirs of coronaviruses and the potentially zoonotic source of viral pathogens.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/virologia , Coronavirus/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência de Bases , China/epidemiologia , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Genoma Viral , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Análise de Sequência de DNA , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/genética , Síndrome Respiratória Aguda Grave/veterinária
18.
J Gen Virol ; 96(12): 3525-3531, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26475793

RESUMO

Bats have been identified as natural reservoirs of many viruses, including reoviruses. Recent studies have demonstrated the interspecies transmission of bat reoviruses to humans. In this study, we report the isolation and molecular characterization of six strains of mammalian orthoreovirus (MRV) from Hipposideros and Myotis spp. These isolates were grouped into MRV serotype 1, 2 or 3 based on the sequences of the S1 gene, which encodes the outer coat protein s1. Importantly, we found that three of six bat MRV strains shared high similarity with MRVs isolated from diseased minks, piglets or humans based on the S1 segment, suggesting that interspecies transmission has occurred between bats and humans or animals. Phylogenetic analyses based on the 10 segments showed that the genomic segments of these bat MRVs had different evolution lineages, suggesting that these bat MRVs may have arisen through reassortment of MRVs of different origins.


Assuntos
Quirópteros/virologia , Vison/virologia , Orthoreovirus de Mamíferos/classificação , Orthoreovirus de Mamíferos/isolamento & purificação , Infecções por Reoviridae/veterinária , Suínos/virologia , Animais , China/epidemiologia , Reservatórios de Doenças/virologia , Humanos , Orthoreovirus de Mamíferos/genética , Filogenia , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/transmissão , Infecções por Reoviridae/virologia , Sorogrupo
19.
Nature ; 503(7477): 535-8, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24172901

RESUMO

The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.


Assuntos
Quirópteros/virologia , Peptidil Dipeptidase A/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , China , Chlorocebus aethiops , Reservatórios de Doenças/virologia , Fezes/virologia , Imunofluorescência , Genoma Viral/genética , Especificidade de Hospedeiro , Humanos , Dados de Sequência Molecular , Pandemias/prevenção & controle , Pandemias/veterinária , Peptidil Dipeptidase A/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Virais/genética , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/ultraestrutura , Síndrome Respiratória Aguda Grave/prevenção & controle , Síndrome Respiratória Aguda Grave/transmissão , Síndrome Respiratória Aguda Grave/veterinária , Síndrome Respiratória Aguda Grave/virologia , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Vírion/isolamento & purificação , Vírion/ultraestrutura , Internalização do Vírus , Viverridae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...