Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Neurobiol ; 60(12): 7208-7221, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37543530

RESUMO

Sleep loss is commonplace nowadays and profoundly impacts cognition. Dopamine receptor D2 (DRD2) makes a specific contribution to cognition, although the precise mechanism underlying how DRD2 affects the cognitive process after sleep deprivation remains unclear. Herein, we observed cognitive impairment and impaired synaptic plasticity, including downregulation of synaptophysin and PSD95, decreased postsynaptic density thickness, neuron complexity, and spine density in chronic sleep restriction (CSR) mice. We also observed downregulated hippocampal DRD2 and Cryab expression in the CSR mice. Meanwhile, NF-κB translocation from the cytoplasm to the nucleus occurred, indicating that neuroinflammation ensued. However, hippocampal delivery of the DRD2 agonist quinpirole effectively rescued these changes. In vitro, quinpirole treatment significantly decreased the release of proinflammatory cytokines in microglial supernatant, indicating a potential anti-neuroinflammatory effect of Drd2/Cryab/NF-κB in CSR mice. Our study provided the evidence that activation of the Drd2 may relieve neuroinflammation and improve sleep deprivation-induced cognitive deficits.


Assuntos
Disfunção Cognitiva , Privação do Sono , Animais , Camundongos , Privação do Sono/complicações , NF-kappa B , Doenças Neuroinflamatórias , Quimpirol , Disfunção Cognitiva/tratamento farmacológico , Hipocampo , Plasticidade Neuronal , Receptores de Dopamina D2
2.
Psychiatry Res ; 323: 115172, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958092

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders that affects children and even continues into adulthood. Dexmedetomidine (DEX), a short-term sedative, can selectively activate the α2-adrenoceptor. Treatment with α2-adrenergic agonists in patients with ADHD is becoming increasingly common. However, the therapeutic potential of DEX for the treatment of ADHD is unknown. Here, we evaluated the effect of DEX on ADHD-like behavior in spontaneously hypertensive rats (SHRs), a widely used animal model of ADHD. DEX treatment ameliorated hyperactivity and spatial working memory deficits and normalized θ electroencephalogram (EEG) rhythms in SHRs. We also found that DEX treatment altered the gut microbiota composition and promoted the enrichment of beneficial gut bacterial genera associated with anti-inflammatory effects in SHRs. The gut pathological scores and permeability and the level of inflammation observed in the gut and brain were remarkably improved after DEX administration. Moreover, transplantation of fecal microbiota from DEX-treated SHRs produced effects that mimicked the therapeutic effects of DEX administration. Therefore, DEX is a promising treatment for ADHD that functions by reshaping the composition of the gut microbiota and reducing inflammation in the gut and brain.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Dexmedetomidina , Encefalite , Microbioma Gastrointestinal , Ratos , Animais , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Ratos Endogâmicos SHR , Inflamação/tratamento farmacológico
3.
Cell Mol Neurobiol ; 43(2): 827-840, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35435537

RESUMO

Abnormal amino acid metabolism in neural cells is involved in the occurrence and development of major depressive disorder. Taurine is an important amino acid required for brain development. Here, microdialysis combined with metabonomic analysis revealed that the level of taurine in the extracellular fluid of the cerebral medial prefrontal cortex (mPFC) was significantly reduced in mice with chronic social defeat stress (CSDS)-induced depression. Therefore, taurine supplementation may be usable an intervention for depression. We found that taurine supplementation effectively rescued immobility time during a tail suspension assay and improved social avoidance behaviors in CSDS mice. Moreover, taurine treatment protected CSDS mice from impairments in dendritic complexity, spine density, and the proportions of different types of spines. The expression of N-methyl D-aspartate receptor subunit 2A, an important synaptic receptor, was largely restored in the mPFC of these mice after taurine supplementation. These results demonstrated that taurine exerted an antidepressive effect by protecting cortical neurons from dendritic spine loss and synaptic protein deficits.


Assuntos
Depressão , Transtorno Depressivo Maior , Camundongos , Animais , Espinhas Dendríticas/metabolismo , Derrota Social , Transtorno Depressivo Maior/metabolismo , Taurina/metabolismo , Taurina/farmacologia , Neurônios , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Estresse Psicológico/metabolismo , Córtex Pré-Frontal/metabolismo , Camundongos Endogâmicos C57BL
4.
Front Mol Neurosci ; 15: 1010152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267698

RESUMO

Social isolation during the juvenile stage results in structural and functional impairment of the brain and deviant adult aggression. However, the specific subregions and cell types that underpin this deviant behavior are still largely unknown. Here, we found that adolescent social isolation led to a shortened latency to attack onset and extended the average attack time, accompanied by anxiety-like behavior and deficits in social preference in adult mice. However, when exposed to social isolation during adulthood, the mice did not show these phenotypes. We also found that the structural plasticity of prefrontal pyramidal neurons, including the dendritic complexity and spine ratio, was impaired in mice exposed to adolescent social isolation. The parvalbumin (PV) interneurons in the prefrontal infralimbic cortex (IL) are highly vulnerable to juvenile social isolation and exhibit decreased cell numbers and reduced activation in adulthood. Moreover, chemogenetic inactivation of IL-PV interneurons can mimic juvenile social isolation-induced deviant aggression and social preference. Conversely, artificial activation of IL-PV interneurons significantly attenuated deviant aggression and rescued social preference during adulthood in mice exposed to adolescent social isolation. These findings implicate juvenile social isolation-induced damage to IL-PV interneurons in long-term aggressive behavior in adulthood.

5.
Int J Neuropsychopharmacol ; 25(9): 774-785, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35797010

RESUMO

BACKGROUND: Anxiety is a negative emotion that contributes to craving and relapse during drug withdrawal. Sirtuins 1 (SIRT1) has been reported to be critical in both negative emotions and drug addiction. However, it remains incompletely elucidated whether SIRT1 is involved in morphine withdrawal-associated anxiety. METHODS: We established a mouse model of anxiety-like behaviors induced by morphine withdrawal and then detected neuronal activity with immunofluorescence and mitochondrial morphology with electron microscopy, mitochondrial DNA contents with quantitative real-time PCR, and mitochondrial function with the ATP content detection kit and the Mitochondrial Complex IV Activity Kit in the basolateral amygdala (BLA). The mitochondrial molecules were detected by western blot. Then we used virus-mediated downregulation and overexpression of SIRT1 in BLA to investigate the effect of SIRT1 on anxiety and mitochondrial function. Finally, we examined the effects of pharmacological inhibition of SIRT1 on anxiety and mitochondrial function. RESULTS: We found that BLA neuronal activity, mitochondrial function, and mtDNA content were significantly higher in morphine withdrawal mice. Furthermore, the expression levels of mitochondrial molecules increased in BLA cells. Virus-mediated downregulation of SIRT1 in BLA prevented anxiety-like behaviors in morphine withdrawal mice, whereas overexpression of SIRT1 in BLA facilitated anxiety-like behaviors in untreated mice through the SIRT1/ peroxisome proliferator activated receptor gamma coactivator 1-alpha pathway. Intra-BLA infusion of selective SIRT1 antagonist EX527 effectively ameliorated anxiety-like behaviors and mitochondrial dysfunction in mice with morphine withdrawal. CONCLUSION: Our results implicate a causal role for SIRT1 in the regulation of anxiety through actions on mitochondrial biogenesis. Inhibitors targeting SIRT1 may have therapeutic potential for the treatment of opioid withdrawal-associated anxiety.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Sirtuína 1 , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Analgésicos Opioides/farmacologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Complexo Nuclear Basolateral da Amígdala/metabolismo , DNA Mitocondrial/metabolismo , DNA Mitocondrial/farmacologia , Camundongos , Mitocôndrias/metabolismo , Morfina/farmacologia , Biogênese de Organelas , PPAR gama/metabolismo , PPAR gama/farmacologia , Sirtuína 1/metabolismo
6.
Front Mol Neurosci ; 14: 819440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140588

RESUMO

Astrocytic glycogen plays an important role in brain energy metabolism. However, the contribution of glycogen metabolism to stress-induced depression remains unclear. Chronic social defeat stress was used to induce depression-like behaviors in mice, assessed with behavioral tests. Glycogen concentration in the medial prefrontal cortex (mPFC) and the expression of key enzymes of the glycogen metabolism were investigated using Western blots, immunofluorescent staining, electron microscopy, and biochemical assays. Stereotaxic surgery and viral-mediated gene transfer were applied to knockdown or overexpress brain-type glycogen phosphorylase (PYGB) in the mPFC. The glycogen content increased in the mPFC after stress. Glycogenolytic dysfunction due to inactivation of PYGB was responsible for glycogen accumulation. Behavioral tests on astrocyte-specific PYGB overexpression mice showed that augmenting astrocytic PYGB reduces susceptibility to depression when compared with stress-susceptible mice. Conversely, PYGB genetic down-regulation in the mPFC was sufficient to induce glycogen accumulation and depression-like behaviors. Furthermore, PYGB overexpression in the mPFC decreases susceptibility to depression, at least partially by rescuing glycogen phosphorylase activity to maintain glycogen metabolism homeostasis during stress. These findings indicate that (1) glycogen accumulation occurs in mice following stress and (2) glycogenolysis reprogramming leads to glycogen accumulation in astrocytes and PYGB contributes to stress-induced depression-like behaviors. Pharmacological tools acting on glycogenolysis might constitute a promising therapy for depression.

7.
Biol Res ; 53(1): 28, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620154

RESUMO

BACKGROUND: Kidney ischemia-reperfusion injury is a common pathophysiological phenomenon in the clinic. A large number of studies have found that the tyrosine protein kinase/signal transducer and activator of transcription (JAK/STAT) pathway is involved in the development of a variety of kidney diseases and renal protection associated with multiple drugs. Edaravone (EDA) is an effective free radical scavenger that has been used clinically for the treatment of postischemic neuronal injury. This study aimed to identify whether EDA improved kidney function in rats with ischemia-reperfusion injury by regulating the JAK/STAT pathway and clarify the underlying mechanism. METHODS: Histomorphological analysis was used to assess pathological kidney injury, and mitochondrial damage was observed by transmission electron microscopy. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining was performed to detect tubular epithelial cell apoptosis. The expression of JAK2, P-JAK2, STAT3, P-STAT3, STAT1, P-STAT1, BAX and Bcl-2 was assessed by western blotting. Mitochondrial function in the kidney was assessed by mitochondrial membrane potential (ΔΨm) measurement. RESULTS: The results showed that EDA inhibited the expression of p-JAK2, p-STAT3 and p-STAT1, accompanied by downregulation of the expression of Bax and caspase-3, and significantly ameliorated kidney damage caused by ischemia-reperfusion injury (IRI). Furthermore, the JC-1 dye assay showed that edaravone attenuated ischemia-reperfusion-induced loss of kidney ΔΨm. CONCLUSION: Our findings indicate that EDA protects against kidney damage caused by ischemia-reperfusion through JAK/STAT signaling, inhibiting apoptosis and improving mitochondrial injury.


Assuntos
Edaravone , Sequestradores de Radicais Livres , Traumatismo por Reperfusão , Animais , Apoptose , Edaravone/farmacologia , Sequestradores de Radicais Livres/farmacologia , Janus Quinases/efeitos dos fármacos , Masculino , Mitocôndrias , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Fatores de Transcrição STAT/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Biol. Res ; 53: 28, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1124213

RESUMO

BACKGROUND: Kidney ischemia-reperfusion injury is a common pathophysiological phenomenon in the clinic. A large number of studies have found that the tyrosine protein kinase/signal transducer and activator of transcription (JAK/STAT) pathway is involved in the development of a variety of kidney diseases and renal protection associated with multiple drugs. Edaravone (EDA) is an effective free radical scavenger that has been used clinically for the treatment of postischemic neuronal injury. This study aimed to identify whether EDA improved kidney function in rats with ischemia-reperfusion injury by regulating the JAK/STAT pathway and clarify the underlying mechanism. METHODS: Histomorphological analysis was used to assess pathological kidney injury, and mitochondrial damage was observed by transmission electron microscopy. Terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling (TUNEL) staining was performed to detect tubular epithelial cell apoptosis. The expression of JAK2, P-JAK2, STAT3, P-STAT3, STAT1, P-STAT1, BAX and Bcl-2 was assessed by western blotting. Mitochondrial function in the kidney was assessed by mitochondrial membrane potential (ΔψM) measurement. RESULTS: The results showed that EDA inhibited the expression of p-JAK2, p-STAT3 and p-STAT1, accompanied by downregulation of the expression of Bax and caspase-3, and significantly ameliorated kidney damage caused by ischemia-reperfusion injury (IRI). Furthermore, the JC-1 dye assay showed that edaravone attenuated ischemia-reperfusion-induced loss of kidney (ΔψM). CONCLUSION: Our findings indicate that EDA protects against kidney damage caused by ischemia-reperfusion through JAK/STAT signaling, inhibiting apoptosis and improving mitochondrial injury.


Assuntos
Animais , Masculino , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Sequestradores de Radicais Livres/farmacologia , Edaravone/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ratos Sprague-Dawley , Apoptose , Fatores de Transcrição STAT/efeitos dos fármacos , Janus Quinases/efeitos dos fármacos , Mitocôndrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...