Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dose Response ; 21(2): 15593258231172271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123604

RESUMO

Radon exposure is significantly associated with lung cancer. Radon concentration is currently reduced mainly by physical methods, but there is a lack of protective drugs or biochemical reagents for radon damage. This study aimed to explore the protective effect of polydatin (PD) on the radon-exposed injury. The results showed that PD can significantly reduce ROS level, raise SOD activity, weaken the migration ability, increase E-cad, and decrease mesenchymal cell surface markers (FN1, Vimentin, N-cad, α-SMA, and Snail) in radon-exposed epithelial cells. In vivo, PD increased the mice weight, promoted SOD activity, and decreased MDA content, the number of bullae, pulmonary septum thickness, lung collagenous fibers, and mesenchymal cell surface markers. Furthermore, PD inhibited p-PI3K, p-AKT, and p-mTOR expression. Compared with directly adding PD on radon-exposed cells, adding PD before and after radon exposure could more obviously improve the adhesion of radon-exposed cells, significantly alleviate the migration ability, and more significantly reduce mesenchyme markers and p-AKT and p-mTOR. These results indicate that PD can reduce oxidative stress, weaken epithelial-mesenchymal transition (EMT) and lung fibrosis in radon-exposed cells/mice, and have good radiation protection against radon injury. The mechanism is related to the inhibition of the PI3K/AKT/mTOR pathway.

2.
J Environ Radioact ; 237: 106667, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34116456

RESUMO

The release of liquid effluent of nuclear power into aquatic system increases with the rapid development of nuclear facilities in coastal and inland regions. Aquatic model animals are very important for the study of the radiation hazards to non-human biota in water environment and its extrapolation of dose-effect relationship to human models. However, the study of the radiation dose rate calculation model of the aquatic animal zebrafish is still on the homogeneous isotropic model used for the protection of the environment. A series of zebrafish models (including adults, larvae and embryos, named zebrafish-family: ZF-family) with multiple internal organs are established in this study to investigate the mechanism of radiation damage effect in order to protect non-human species. The internal and external dose coefficients (DCs) of the whole body, heart and gonads of zebrafishes are calculated in water environment with the combination of the real experimental culture condition, using Monte Carlo application package GATE (Geant4 Application for Emission Tomography) and eight nuclides, i.e., 3H, 14C, 90Sr, 60Co, 110mAg, 134Cs, 137Cs, 131I, which are commonly found in the liquid effluent of nuclear power plants, as the source items, The results show that the level of nuclide γ energy determines the external DCs (DCext), and 90Sr plays the most important role in internal DCs (DCint). The comparison between the external DCs of the heart and gonad and that of the whole body shows that DCs (DCext) of heart and gonad for females are 80% and 43% lower than that of whole body, respectively, while for males, the DCs (DCext) of heart is 44% lower than that of the whole body, and DCs (DCext) of gonad is slightly higher than that of the whole body for most nuclides (up to 25%).The dose of internal radiation makes greater contribution than that of external radiation to pure beta emitter (3H, 14C, 90Sr). This internal DCs of ZF-family model with complex internal structure turns out to demonstrate more sensitive DCs change trend and higher calculation values compared with the internal DCs of the simple ellipsoid model. In this model, the photon emitter with strong penetrating power has higher internal DCs, while the low-energy pure beta nuclide does not alter much. In conclusion, it is vital to carry out refined systematic modeling for model organisms, and the determination of DCs of model organs can promote the evaluation of the radiation effects on non-human species.


Assuntos
Monitoramento de Radiação , Peixe-Zebra , Animais , Feminino , Raios gama , Masculino , Método de Monte Carlo , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...