Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 184: 108466, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38310816

RESUMO

The selective removal of targeted pollutants from complex wastewater is challenging. Herein, a novel persulfate (PS)-based advanced oxidation system equipped with a series of two-dimensional (2D) bimetallic oxide nanosheets (NSs) catalysts is developed to selectively degrade bisphenol A (BPA) within mixed pollutants via initiating nonradical-induced polymerization. Results indicate that the Ni0.60Co0.40Ox NSs demonstrate the highest catalytic efficiency among all Ni-Co NSs catalysts. Specifically, BPA degradation rate is 47.34, 27.26, and 9.72 times higher than that of 4-chlorophenol, phenol, and 2,4-dichlorophenol in the mixed solution, respectively. The lower oxidative potential of BPA in relation to the other pollutants renders it the primary target for oxidation within the PDS activation system. PDS molecules combine on the surface of Ni0.60Co0.40Ox NSs to form the surface-activated complex, triggering the generation of BPA monomer radicals through H-abstraction or electron transfer. These radicals subsequently polymerize on the surface of the catalyst through coupling reactions. Importantly, this polymerization process can occur under typical aquatic environmental conditions and demonstrates resistance to background matrices like Cl- and humic acid due to its inherent nonradical attributes. This study offers valuable insights into the targeted conversion of organic pollutants in wastewater into value-added polymers, contributing to carbon recycle and circular economy.


Assuntos
Compostos Benzidrílicos , Poluentes Ambientais , Poluentes Químicos da Água , Óxidos , Águas Residuárias , Oxirredução , Fenóis/análise
2.
J Microbiol Immunol Infect ; 57(2): 246-256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383245

RESUMO

BACKGROUND: Trichomonas vaginalis is parasitic protozoan that causes human urogenital infections. Accumulated reports indicated that exosomes released by this parasite play a crucial role in transmitting information and substances between cells during host-parasite interactions. Current knowledge on the protein contents in T. vaginalis exosome is mainly generated from three previous studies that used different T. vaginalis isolates as an experimental model. Whether T. vaginalis exosomes comprise a common set of proteins (core exosome proteome) is still unclear. METHODS: To explore the core exosome proteome in T. vaginalis, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the contents of sucrose ultracentrifugation-enriched exosome and supernatant fractions isolated from six isolates. RESULTS: Transmission electron microscopy (TEM) confirmed the presence of exosomes in the enriched fraction. Proteomic analysis identified a total of 1870 proteins from exosomal extracts. There were 1207 exosomal-specific proteins after excluding 436 'non-core exosomal proteins'. Among these, 72 common exosomal-specific proteins were expressed in all six isolates. Compared with three published T. vaginalis exosome proteome datasets, we identified 16 core exosomal-specific proteins. These core exosomal-specific proteins included tetraspanin (TvTSP1), the classical exosome marker, and proteins mainly involved in catalytic activity and binding such as ribosomal proteins, ras-associated binding (Rab) proteins, and heterotrimeric G proteins. CONCLUSIONS: Our study highlighted the importance of using supernatant fraction from exosomal extract as a control to eliminate 'non-core exosomal proteins'. We compiled a reference core exosome proteome of T. vaginalis, which is essential for developing a fundamental understanding of exosome-mediated cell communication and host-parasite interaction.


Assuntos
Exossomos , Trichomonas vaginalis , Humanos , Trichomonas vaginalis/metabolismo , Proteoma/análise , Exossomos/química , Exossomos/metabolismo , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem
3.
Front Microbiol ; 13: 893692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602021

RESUMO

Trichomonas vaginalis is a parasitic protist that infects the human urogenital tract. During the infection, trichomonads adhere to the host mucosa, acquire nutrients from the vaginal/prostate environment, and release small extracellular vesicles (sEVs) that contribute to the trichomonad adherence and modulate the host-parasite communication. Approximately 40-70% of T. vaginalis strains harbor a double-stranded RNA virus called Trichomonasvirus (TVV). Naked TVV particles have the potential to stimulate a proinflammatory response in human cells, however, the mode of TVV release from trichomonads to the environment is not clear. In this report, we showed for the first time that TVV particles are released from T. vaginalis cells within sEVs. The sEVs loaded with TVV stimulated a higher proinflammatory response of human HaCaT cells in comparison to sEVs from TVV negative parasites. Moreover, a comparison of T. vaginalis isogenic TVV plus and TVV minus clones revealed a significant impact of TVV infection on the sEV proteome and RNA cargo. Small EVs from TVV positive trichomonads contained 12 enriched and 8 unique proteins including membrane-associated BspA adhesine, and about a 2.5-fold increase in the content of small regulatory tsRNA. As T. vaginalis isolates are frequently infected with TVV, the release of TVV via sEVs to the environment represents an important factor with the potential to enhance inflammation-related pathogenesis during trichomoniasis.

4.
Genes (Basel) ; 13(3)2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328084

RESUMO

Accumulated evidence suggests that the endosymbiotic Trichomonasvirus (TVV) may play a role in the pathogenesis and drug susceptibility of Trichomonas vaginalis. Several reports have shown that extracellular vesicles (EVs) released from TVV-positive (TVV+) trichomonads can modulate the immune response in human vaginal epithelial cells and animal models. These results prompted us to examine whether EVs released from TVV+ isolates contained TVV. We isolated small extracellular vesicles (sEVs) from six T. vaginalis isolates that were either TVV free (ATCC 50143), harbored a single (ATCC 30236, ATCC 30238, T1), two (ATCC PRA-98), or three TVV subspecies (ATCC 50148). The presence of TVV subspecies in the six isolates was observed using reverse transcription-polymerase chain reaction (RT-PCR). Transmission electron microscopy (TEM) confirmed the presence of cup-shaped sEVs with a size range from 30-150 nm. Trichomonas vaginalis tetraspanin (TvTSP1; TVAG_019180), the classical exosome marker, was identified in all the sEV preparations. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that all the sEVs isolated from TVV+ isolates contain viral capsid proteins derived from the same TVV subspecies in that isolate as demonstrated by RT-PCR. To provide more comprehensive information on the TVV subspecies population in other T. vaginalis isolates, we investigated the distribution of TVV subspecies in twenty-four isolates by mining the New-Generation Sequencing (NGS) RNAseq datasets. Our results should be beneficial for future studies investigating the role of TVV on the pathogenicity of T. vaginalis and the possible transmission of virus subspecies among different isolates via sEVs.


Assuntos
Vesículas Extracelulares , Vírus de RNA , Trichomonas vaginalis , Animais , Cromatografia Líquida , Vesículas Extracelulares/genética , Feminino , Vírus de RNA/genética , RNA de Cadeia Dupla , Espectrometria de Massas em Tandem , Trichomonas vaginalis/genética
5.
Curr Microbiol ; 77(7): 1292-1300, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32140834

RESUMO

Characterizing soil bacterial community is important to understand microbial distribution affected by environmental factors. Here, we investigated the bacterial communities distributed from different location on Nanshazhou island, South China Sea. We collected and compared soil bacterial communities from central island, intertidal island, and inshore island. Results showed no difference in the bacterial richness and diversity for the soils from the three different locations. However, weighted and unweighted UniFrac distances analysis revealed that the three soil samples were clearly separated from each other. Five bacterial phyla, including Proteobacteria, Bacteroidetes, Verrucomicrobia, Spirochaetes and Tenericutes were more abundant in the inshore island sample; while Deinococcus-Thermus was more abundant in the intertidal island sample; and the central island sample had more abundant Gemmatimonadetes and Planctomycetes. Bacterial structure showed significantly positive relationships with organic matter content, but it was significantly negatively correlated with sodium content. Furthermore, a network analysis based on Spearman correlation coefficients showed that there were similar numbers of positive and negative correlations within the bacterial community of Nanshazhou island. Our results revealed that the soil bacterial communities in the three sampling sites were easily affected by environmental fluctuations.


Assuntos
Bactérias , Microbiota/genética , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Biodiversidade , China , Ilhas , Oceanos e Mares
6.
Oncol Res Treat ; 40(1-2): 15-20, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28118628

RESUMO

BACKGROUND: Novel molecular markers are important diagnostic tools for the assessment of cancer progression and evaluation of effectiveness of the treatment. SOX9, a key regulator of developmental processes, is overexpressed in various neoplasms, such as prostate, breast, and colorectal cancers. However, the utilization of SOX9 as a biomarker for other urological cancers has not yet been investigated. METHODS: In the present study, paired patient tissue microarrays were analyzed by immunohistochemistry, and the SOX9 protein expression was quantitated as immunoreactive scores in patients with renal cell carcinoma (RCC), bladder cancer (BCa), and penile cancer (PC). RESULTS: In comparison with normal tissues, SOX9 protein expression was significantly upregulated in RCC (p < 0.001) and BCa (p < 0.001), and significantly correlated with the advanced pathological grade (RCC: p = 0.023) and clinical stage (RCC: p = 0.022 and BCa: p = 0.046) of patients. Based on the mRNA level in the TCGA dataset, SOX9 was upregulated in RCC with gender (p = 0.027), advanced pathological grade (p = 0.003) and advanced clinical stage (p = 0.001). Kaplan-Meier survival curves revealed that RCC patients with high SOX9 levels had shorter survival (p < 0.001). Further, high SOX9 expression was an independent prognostic factor for RCC patients (hazard ratio 0.056, 95% confidence interval 0.607-1.184; p < 0.001). CONCLUSION: These findings suggest that SOX9 may play an important role in tumor progression of RCC and BCa and it may be used as a biomarker of this malignancy.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Neoplasias Penianas/patologia , Fatores de Transcrição SOX9/metabolismo , Neoplasias da Bexiga Urinária/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Penianas/metabolismo , Prognóstico , RNA Mensageiro/genética , Fatores de Transcrição SOX9/genética , Análise Serial de Tecidos , Neoplasias da Bexiga Urinária/metabolismo , Adulto Jovem
7.
Environ Pollut ; 220(Pt B): 1359-1365, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27836473

RESUMO

Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. We report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacterium Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). These results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation.


Assuntos
Bactérias/metabolismo , Mercúrio/análise , Compostos de Metilmercúrio/análise , Processos Fotoquímicos , Poluentes Químicos da Água/análise , Disponibilidade Biológica , Mercúrio/química , Mercúrio/metabolismo , Metilação , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/metabolismo , Água/química , Microbiologia da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
10.
Bioresour Technol ; 218: 526-32, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27395000

RESUMO

Efficient sludge dewatering methods are highly desired by municipal wastewater treatment plants. In this study, Fe@Fe2O3 nanomaterial, combined with polydiallyldimethylammonium chloride (PDMDAAC) and H2SO4, was used for sludge dewatering. This composite conditioner exhibited an excellent dewatering capability. By using uniform design, the optimized dosages of Fe@Fe2O3, H2SO4 and PDMDAAC were determined to be 40, 136 and 4.8mg/gDS (dry solids), respectively. The moisture content of sludge cake decreased from 78.1% to 64.8%, and the capillary suction time from 56 to 21s. The sludge extracellular polymeric substances (EPS) were decomposed, resulting in greater conversion of the bound water into free water and the release of free water. The electron spin resonance results show that the molecular oxygen activation process induced by Fe@Fe2O3 produced hydroxyl radicals, which were mainly responsible for the EPS decomposition. In this way, an efficient composite conditioner for enhancing sludge dewatering was developed.


Assuntos
Ferro/química , Polímeros/química , Esgotos , Eliminação de Resíduos Líquidos/métodos , Varredura Diferencial de Calorimetria , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Radical Hidroxila , Nanoestruturas/química , Oxigênio/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Ácidos Sulfúricos/química , Água/química
11.
Oncol Lett ; 11(3): 2001-2008, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26998113

RESUMO

B-cell lymphoma 9 (BCL9), a component of aberrantly activated Wnt signaling, is an important contributing factor to tumor progression. Our previous data indicated that downregulation of the tumor suppressor microRNA-30c (miR-30c) was a frequent pathogenetic event in prostate cancer (PCa). However, a functional link between miR-30c and BCL9/Wnt signaling, and their clinical and pathological significance in PCa, have not been well established. The present study demonstrated that miR-30c serves as a key negative regulator targeting BCL9 transcription in PCa cells. Ectopic expression of miR-30c was associated with reduced expression of Wnt pathway downstream targets, including c-Myc, cluster of differentiation 44 and sex determining region Y-box 9 in DU145 human PCa cells. Examination of clinical prostate specimens revealed higher levels of BCL9 expression in PCa compared with that in benign prostate tissues. After substantiating this finding by patient sample analysis, BCL9 expression or activity was observed to be closely correlated with PCa biochemical recurrence (BCR) and disease progression, whereas it was inversely associated with miR-30c. Furthermore, overexpression of BCL9 in PCa acted cooperatively with miR-30c low expression to predict earlier BCR in PCa. These findings indicate that inhibition of BCL9/Wnt signaling by miR-30c is important in the progression of PCa. Furthermore, the combined analysis of miR-30c and BCL9 may be valuable tool for prediction of BCR in PCa patients following radical prostatectomy.

12.
Chemosphere ; 151: 234-40, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26946114

RESUMO

Photochemical redox transformation of Cr(VI)-NOM complexes substantially affects transport and speciation of less toxic Cr(III) in natural waters. However, the underlying mechanisms remain unclear. This study reported photochemical reactions of Cr(VI) with thiol-enriched NOM under acidic condition. More effective thiols enrichment in humic acid (HA) was observed than that in fulvic acid (FA), thereby resulting in a higher reduction capacity and faster rate of Cr(VI) photo-reduction. Chemical addition of sulfide to HA formed a large number of S-containing molecular formulae, which subsequently disappeared following reactions with Cr(VI) under solar irradiation. Cr(VI) photo-reduction in thiol-enriched HA consumed more S-containing formulae. Solar irradiation caused a rapid loss of the reduction capacities and thiol contents in HA and FA. All these findings can provide useful information for understanding the biogeochemical cycles of chromium and sulfur, and are also of environmental significance because they may partially account for photo-transformation of Cr(VI) when chromium enters into the aquatic environment as acidic industrial effluents.

13.
Int J Oncol ; 48(4): 1650-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26891801

RESUMO

Increased expression of E2F1 has been reported to be associated with tumor growth and cell survival of prostate cancer (PCa). However, its roles and mechanisms on PCa have not been fully elucidated. The present study found that E2F1 overexpression in PCa tissues was significantly associated with high Gleason score (P=0.01) and advanced pathological stage (P=0.02). In addition, PCa patients with high E2F1 expression more frequently had shorter biochemical recurrence-free survival (P=0.047) than those with low E2F1 expression. Then, we confirmed that the knock-down of E2F1 expression was able to inhibit cell cycle progression, invasion and migration of PCa cell lines in vitro, along with tumor xenograft growth and epithelial-to-mesenchymal transition (EMT) in vivo. Moreover, we identified CD147 as a novel interaction partner for E2F1 through bio-informatic binding site prediction, combined with chromatin immunoprecipitation-PCR (ChIP-PCR) and western blot analysis. Taken together, our data delineate an as yet unrecognized function of E2F1 as enhancer of tumor invasion and migration of PCa via regulating the expression of CD147 in PCa. Importantly, E2F1 may function as a biomarker that can differentiate patients with biochemical recurrent and non-biochemical recurrent disease following radical prostatectomy, highlighting its potential as a therapeutic target.


Assuntos
Basigina/metabolismo , Fator de Transcrição E2F1/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Basigina/genética , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular , Fator de Transcrição E2F1/química , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Gradação de Tumores , Invasividade Neoplásica , Prognóstico , Neoplasias da Próstata/genética , Análise de Sobrevida
14.
Biomed Pharmacother ; 78: 116-120, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26898432

RESUMO

BACKGROUND: Protein regulator of cytokinesis 1 (PRC1) has been reported to be implicated into the completion of cytokinesis and is dys-regulated in a cancer-specific manner. However, it roles in human prostate cancer (PCa) remain unclear. In the current study, we aimed to investigate the expression pattern of PRC1 and its clinical significance in this malignancy. MATERIALS AND METHODS: PRC1 protein expression in human PCa and non-cancerous prostate tissues was detected by immunohistochemistry, which was validated by microarray-based Taylor data at mRNA level. Then, the associations of PRC1 expression with clinicopathological features and clinical outcome of PCa patients were statistically analyzed. RESULTS: PRC1 expression in PCa tissues, at both mRNA and protein levels, were significantly higher than those in non-cancerous prostate tissues. In addition, the PCa patients with PRC1 overexpression more frequently had high Gleason score, advanced pathological stage, positive metastasis, short overall survival time and positive PSA failure than those with low Gleason score, early pathological stage, negative metastasis, long overall survival time and negative PSA failure (all P<0.05). Moreover, PRC1 expression was identified as an unfavorable prognostic factor of biochemical recurrence-free survival in PCa patients (P<0.001). CONCLUSION: These findings suggest that the aberrant expression of PRC1 may predict biochemical recurrence in men with PCa highlighting its potential as a prognostic marker of this malignancy.


Assuntos
Proteínas de Ciclo Celular/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Idoso , Proteínas de Ciclo Celular/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Análise Multivariada , Invasividade Neoplásica
15.
Chemosphere ; 147: 20-4, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26751128

RESUMO

Although natural organic matter (NOM) is known to affect biological reduction of U(VI) and subsequent reoxidation of U(IV), the underlying mechanisms remain unclear. This study investigated the redox reactions of sulfide with NOM to form thiol functional groups, which can greatly enhance U(VI) bioreduction and U(IV) reoxidation. Results showed that humic acid (HA) was found to be more effective than fulvic acid (FA) in producing thiol groups, both U(VI) bioreduction and U(IV) reoxidation rates increased with the increase of thiols content in HA and FA. These findings suggested that among other redox sites, thiol groups in NOM may play an important role in the electron transport between uranium and microbial cells, and are of great environmental implications because they provided direct proof that thiol groups are responsible for bioremediation and immobilization of uranium when it enters into the natural environments such as soil and groundwater.

16.
Ecotoxicology ; 24(10): 2207-12, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26403610

RESUMO

The surface interaction between heavy metals and natural organic matters (NOM) substantially affects their migration and conversion in natural environments. In this study, the chemical speciation and element mapping of Fe and Mn in reduced NOM were investigated. The results show that quinone and semiquinone moieties dominated the redox properties in NOM, and the EPR signal intensity exhibited pH dependence with an increase of EPR signal intensity at a higher pH value. The EPR results indicate that the complexes displayed the characteristics of superparamagnetic oxides/oxyhydroxides after Fe/Mn complexed with NOM. µ-XRF results suggest that the scatterplots of Fe and Mn distributions at pH 11 had the most positive linearly-related plot points, indicating strong correlations for Mn-Fe binary metallic ions. µ-XANES results further interpret the presence of higher Mn oxidation state at pH 11, while Fe kept trivalent in all samples. These results reveal that the surface interactions are closely related to the redox state of NOM and are beneficial for better understanding the speciation, immobilization, transport, and toxicity of metal ions in natural waters.


Assuntos
Substâncias Húmicas/análise , Ferro/análise , Manganês/análise , Poluentes Químicos da Água/análise , Espectroscopia de Ressonância de Spin Eletrônica , Monitoramento Ambiental , Espectrometria por Raios X , Espectroscopia por Absorção de Raios X
17.
BMC Urol ; 15: 90, 2015 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-26320076

RESUMO

BACKGROUND: The NIMA-related kinase 2 (NEK2) is a serine/threonine kinase that is involved in regulation of centrosome duplication and spindle assembly during mitosis. Dysregulation of these processes causes chromosome instability and aneuploidy, which are hallmark changes of many solid tumors. However, whether aberrant expression of NEK2 is associated with outcome of prostate cancer (PCa) patients remains to be determined. METHODS: Expression of NEK2 in human PCa cells and primary PCa tissues was assessed by quantitative RT-PCR. Expression of NEK2 in human PCa cells was depleted with siRNA. Effects of the depletion on cell proliferation, survival, and tumorigenicity were assessed both in vitro with cell cultures and in vivo with subcutaneous implantation of xenografts. In silico analyses of the online Taylor dataset were carried out to determine whether the expression level of NEK2 correlated with the clinicopathological characteristics of prostate cancer. RESULTS: Compared with benign human prostatic epithelial cells and tissues, the expression of NEK2 was elevated in human PCa cells and primary PCa tissues. Depleting NEK2 expression inhibited human PCa cell proliferation in vitro and xenograft growth in vivo. Expression level of NEK2 in PCa positively correlated with the Gleason score and pathologic stage of the patient. CONCLUSION: The results suggest that overexpression of NEK2 has the potential to serve as a biomarker for PCa prognosis. Further validation with large sample pool is warrant.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Quinases Relacionadas a NIMA , Prognóstico , Reprodutibilidade dos Testes , Medição de Risco/métodos , Sensibilidade e Especificidade , Regulação para Cima
18.
Int J Mol Med ; 35(4): 966-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25647485

RESUMO

Centromere protein F (CENPF) is a protein associated with the centromere-kinetochore complex and chromosomal segregation during mitosis. Previous studies have demonstrated that the upregulation of CENPF may be used as a proliferation marker of malignant cell growth in tumors. The overexpression of CENPF has also been reported to be associated with a poor prognosis in human cancers. However, the clinical significance of CENPF in prostate cancer (PCa) has not yet been fully elucidated. Thus, the aim of the present study was to determine the association of CENPF with tumor progression and prognosis in patients with PCa. The expression of CENPF at the protein level in human PCa and non-cancerous prostate tissues was detected by immunohistochemical analysis, which was further validated using a microarray-based dataset (NCBI GEO accession no: GSE21032) at the mRNA level. Subsequently, the association of CENPF expression with the clinicopathological characteristics of the patients with PCa was statistically analyzed. Immunohistochemistry and dataset analysis revealed that CENPF expression was significantly increased in the PCa tissues compared with the non-cancerous prostate tissues [immunoreactivity score (IRS): PCa, 177.98 ± 94.096 vs. benign, 121.30 ± 89.596, P < 0.001; mRNA expression in the dataset: PCa, 5.67 ± 0.47 vs. benign, 5.40 ± 0.11; P < 0.001]. Additionally, as revealed by the dataset, the upregulation of CENPF mRNA expression in the PCa tissues significantly correlated with a higher Gleason score (GS, P = 0.005), an advanced pathological stage (P = 0.008), the presence of metastasis (P < 0.001), a shorter overall survival (P=0.003) and prostate-specific antigen (PSA) failure (P < 0.001). Furthermore, both univariate and multivariate analyses revealed that the upregulation of CENPF was an independent predictor of poor biochemical recurrence (BCR)-free survival (P < 0.001 and P = 0.012, respectively). Our data suggest that the increased expression of CENPF plays an important role in the progression of PCa. More importantly, the increased expression of CENPF may efficiently predict poor BCR-free survival in patients with PCa.


Assuntos
Proteínas Cromossômicas não Histona/genética , Regulação Neoplásica da Expressão Gênica , Proteínas dos Microfilamentos/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Idoso , Idoso de 80 Anos ou mais , Proteínas Cromossômicas não Histona/metabolismo , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Prognóstico , Modelos de Riscos Proporcionais , Neoplasias da Próstata/mortalidade
19.
Tumour Biol ; 36(3): 1983-91, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25394900

RESUMO

We previously demonstrated that microRNA (miR)-224 expression was significantly reduced in human prostate cancer (PCa) tissues and predicted unfavorable prognosis in patients. However, the underlying mechanisms of miR-224 have not been fully elucidated. In this study, calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) was identified as a target gene of miR-224. Then, we found that enforced expression of miR-224 could suppress PCa cell proliferation and cell cycle by regulating the expression of CAMKK2 in vitro. In addition, the expression levels of miR-224 in PCa tissues were negatively correlated with those of CAMKK2 mRNA significantly (Spearman's correlation: r = -0.66, P = 0.004). Moreover, combined low miR-224 expression and high CAMKK2 expression (miR-224-low/CAMKK2-high) was closely correlated with advanced clinical stage (P = 0.028). Furthermore, PCa patients with miR-224-low/CAMKK2-high expression more frequently had shorter overall survival than those in groups with other expression patterns of two molecules. In conclusion, our data offer the convincing evidence that miR-224 and its target gene CAMKK2 may synergistically contribute to the malignant progression of PCa. Combined detection of miR-224 and CAMKK2 expressions represents an efficient predictor of patient prognosis and may be a novel marker which can provide additional prognostic information in PCa.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias da Próstata/patologia , RNA Mensageiro/genética
20.
Hum Pathol ; 46(2): 295-303, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25532941

RESUMO

Our previous study revealed that microRNA (miR)-224 down-regulation could promote tumor progression of prostate cancer (PCa) and might be associated with poor biochemical recurrence-free survival of patients with this malignancy. However, the underlying mechanisms of miR-224 have not been fully elucidated. In the current study, apelin (APLN) was identified as a target gene of miR-224. Forced expression of miR-224 inhibited PCa cell invasion and migration by suppressing the expression of APLN. In addition, the down-regulation of miR-224 was negatively correlated with the up-regulation of APLN mRNA in PCa tissues. Moreover, miR-224 down-regulation was significantly associated with advanced clinical stage (P = .027) and metastasis (P = .001), whereas APLN up-regulation more frequently occurred in PCa tissues with advanced pathologic stage (P = .003), metastasis (P < .001), and prostate-specific antigen failure (P = .001). Furthermore, patients with PCa in the miR-224-low/APLN-high group more frequently had shorter biochemical recurrence-free survival than those in groups with other expression patterns of the 2 molecules. Taken together, our data strongly confirmed for the first time that the dysregulated miR-224/APLN axis may be associated with tumorigenesis and aggressive progression of PCa. More importantly, miR-224 down-regulation and APLN up-regulation may synergistically predict biochemical recurrence-free survival in patients with PCa.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apelina , Progressão da Doença , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...