Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 628(8009): 765-770, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658685

RESUMO

Solar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight1,2. Following a decade of advancement, Cu2O photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials3-5. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance6. Here we demonstrate performance of Cu2O photocathodes beyond the state-of-the-art by exploiting a new conceptual understanding of carrier recombination and transport in single-crystal Cu2O thin films. Using ambient liquid-phase epitaxy, we present a new method to grow single-crystal Cu2O samples with three crystal orientations. Broadband femtosecond transient reflection spectroscopy measurements were used to quantify anisotropic optoelectronic properties, through which the carrier mobility along the [111] direction was found to be an order of magnitude higher than those along other orientations. Driven by these findings, we developed a polycrystalline Cu2O photocathode with an extraordinarily pure (111) orientation and (111) terminating facets using a simple and low-cost method, which delivers 7 mA cm-2 current density (more than 70% improvement compared to that of state-of-the-art electrodeposited devices) at 0.5 V versus a reversible hydrogen electrode under air mass 1.5 G illumination, and stable operation over at least 120 h.

3.
Nat Commun ; 14(1): 7228, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945577

RESUMO

Cuprous oxide (Cu2O) is a promising oxide material for photoelectrochemical water splitting (PEC), and increasing its photovoltage is the key to creating efficient overall PEC water-splitting devices. Previous reports are mostly focused on optimizing the energy band alignment between Cu2O and the n-type buffer layer to improve the photovoltage of Cu2O photocathodes. However, the band alignment between the n-type buffer layer and the protective layer is often ignored. In this work, Cu2O photocathodes with a single buffer layer (Ga2O3) and dual buffer layers (Ga2O3/ZnGeOx) are fabricated, and their PEC performances are compared. Results show that after inserting the second buffer layer (ZnGeOx), the onset potential of the Cu2O photocathode increases by 0.16 V. Operando electrochemical impedance spectroscopy measurements and analysis of the energy-level diagrams of each layer show that an energy level gradient between Ga2O3 and TiO2 is created when ZnGeOx is introduced, which eliminates the potential barrier at the interface of Ga2O3/TiO2 and improves the photovoltage of the Cu2O photocathode. Our work provides an effective approach to improve the photovoltage of photoelectrodes for solar water splitting by introducing dual buffer layers.

4.
Nat Commun ; 14(1): 5445, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673889

RESUMO

Halide perovskites solar cells are now approaching commercialisation. In this transition from academic research towards industrialisation, standardized testing protocols and reliable dissemination of performance metrics are crucial. In this study, we analyze data from over 16,000 publications in the Perovskite Database to investigate the assumed equality between the integrated external quantum efficiency and the short circuit current from JV measurements. We find a systematic discrepancy with the JV-values being on average 4% larger. This discrepancy persists across time, perovskite composition, and device architecture, indicating the need to explore new perovskite physics and update reporting protocols and assumptions in the field.

5.
Small ; 19(22): e2208289, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36871149

RESUMO

Wide-bandgap perovskite solar cells (PSCs) have attracted a lot of attention due to their application in tandem solar cells. However, the open-circuit voltage (VOC ) of wide-bandgap PSCs is dramatically limited by high defect density existing at the interface and bulk of the perovskite film. Here, an anti-solvent optimized adduct to control perovskite crystallization strategy that reduces nonradiative recombination and minimizes VOC deficit is proposed. Specifically, an organic solvent with similar dipole moment, isopropanol (IPA) is added into ethyl acetate (EA) anti-solvent, which is beneficial to form PbI2 adducts with better crystalline orientation and direct formation of α-phase perovskite. As a result, EA-IPA (7-1) based 1.67 eV PSCs deliver a power conversion efficiency of 20.06% and a VOC of 1.255 V, which is one of the remarkable values for wide-bandgap around 1.67 eV. The findings provide an effective strategy for controlling crystallization to reduce defect density in PSCs.

6.
iScience ; 26(2): 106015, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36818299

RESUMO

The cement industry is one of the largest contributors to global CO2 emissions, which has been paid more attention to the research on converting the CO2 released by the cement production process. It is extremely challenging to decarbonize the cement industry, as most CO2 emissions result from the calcination of limestone (CaCO3) into CaO and CO2. In this work, we demonstrate an in situ electrochemical process that transforms CaCO3 into portlandite (Ca(OH)2, a key Portland cement precursor) and valuable carbonaceous products, which integrates electrochemical water splitting and CO2 reduction reaction with the chemical decomposition of CaCO3. With different metal catalyst electrodes (like Au, Ag, In, Cu, and Cu nanowires electrodes), we have achieved various valuable carbonaceous products, such as CO, formate, methane, ethylene, and ethane during the electrochemical CO2 process. Our work demonstrates a proof of concept for green and sustainable cement production.

7.
Small ; 19(9): e2206175, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36534834

RESUMO

About 10% efficient antimony selenosulfide (Sb2 (S,Se)3 ) solar cell is realized by using selenourea as a hydrothermal raw material to prepare absorber layers. However, tailoring the bandgap of hydrothermal-based Sb2 (S,Se)3 film to the ideal bandgap (1.3-1.4 eV) using the selenourea for optimal efficiency is still a challenge. Moreover, the expensive selenourea dramatically increases the fabricating cost. Here, a straightforward one-step hydrothermal method is developed to prepare high-quality Sb2 (S,Se)3 films using a novel precursor sodium selenosulfate as the selenium source. By tuning the Se/(Se+S) ratio in the hydrothermal precursor solution, a series of high-quality Sb2 (S,Se)3 films with reduced density of deep defect states and tunable bandgap from 1.31 to 1.71 eV is successfully prepared. Consequently, the best efficiency of 10.05% with a high current density of 26.01 mA cm-2 is achieved in 1.35 eV Sb2 (S,Se)3 solar cells. Compared with the traditional method using selenourea, the production cost for the Sb2 (S,Se)3  devices is reduced by over 80%. In addition, the device exhibits outstanding stability, maintaining more than 93% of the initial power conversion efficiency after 30 days of exposure in the atmosphere without encapsulation. The present work definitely paves a facile and effective way to develop low-cost and high-efficiency chalcogenide-based photovoltaic devices.

8.
ACS Appl Mater Interfaces ; 14(50): 55691-55699, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475574

RESUMO

Vapor-transport deposition (VTD) method is the main technique for the preparation of Sb2Se3 films. However, oxygen is often present in the vacuum tube in such a vacuum deposition process, and Sb2O3 is formed on the surface of Sb2Se3 because the bonding of Sb-O is formed more easily than that of Sb-Se. In this work, the formation of Sb2O3 and thus the carrier transport in the corresponding solar cells were studied by tailoring the deposition microenvironment in the vacuum tube during Sb2Se3 film deposition. Combined by different characterization techniques, we found that tailoring the deposition microenvironment can not only effectively inhibit the formation of Sb2O3 at the CdS/Sb2Se3 interface but also enhance the crystalline quality of the Sb2Se3 thin film. In particular, such modification induces the formation of (hkl, l = 1)-oriented Sb2Se3 thin films, reducing the interface recombination of the subsequently fabricated devices. Finally, the Sb2Se3 solar cell with the configuration of ITO/CdS/Sb2Se3/Spiro-OMeTAD/Au achieves a champion efficiency of 7.27%, a high record for Sb2Se3 solar cells prepared by the VTD method. This work offers guidance for the preparation of high-efficiency Sb2Se3 thin-film solar cells under rough-vacuum conditions.

9.
Nat Commun ; 13(1): 7639, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496471

RESUMO

During the last decade lead halide perovskites have shown great potential for photovoltaic applications. However, the stability of perovskite solar cells still restricts commercialization, and lack of properly implemented unified stability testing and disseminating standards makes it difficult to compare historical stability data for evaluating promising routes towards better device stability. Here, we propose a single indicator to describe device stability that normalizes the stability results with respect to different environmental stress conditions which enables a direct comparison of different stability results. Based on this indicator and an open dataset of heterogeneous stability data of over 7000 devices, we have conducted a statistical analysis to assess the effect of different stability improvement strategies. This provides important insights for achieving more stable perovskite solar cells and we also provide suggestions for future directions in the perovskite solar cell field based on big data utilization.


Assuntos
Big Data , Compostos de Cálcio , Óxidos , Resolução de Problemas
10.
ACS Cent Sci ; 8(9): 1336-1349, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36188350

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the gradual loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein aggregates called Lewy bodies. Here, nanodecoys were designed from a rabies virus polypeptide with a 29 amino acid (RVG29)-modified red blood cell membrane (RBCm) to encapsulate curcumin nanocrystals (Cur-NCs), which could effectively protect dopaminergic neurons. The RVG29-RBCm/Cur-NCs nanodecoys effectively escaped from reticuloendothelial system (RES) uptake, enabled prolonged blood circulation, and enhanced blood-brain barrier (BBB) crossing after systemic administration. Cur-NCs loaded inside the nanodecoys exhibited the recovery of dopamine levels, inhibition of α-synuclein aggregation, and reversal of mitochondrial dysfunction in PD mice. These findings indicate the promising potential of biomimetic nanodecoys in treating PD and other neurodegenerative diseases.

11.
Sci Adv ; 8(35): eabo3733, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054361

RESUMO

There exists a considerable density of interaggregate grain boundaries (GBs) and intra-aggregate GBs in polycrystalline perovskites. Mitigation of intra-aggregate GBs is equally notable to that of interaggregate GBs as intra-aggregate GBs can also cause detrimental effects on the photovoltaic performances of perovskite solar cells (PSCs). Here, we demonstrate full-scale GB mitigation ranging from nanoscale intra-aggregate to submicron-scale interaggregate GBs, by modulating the crystallization kinetics using a judiciously designed brominated arylamine trimer. The optimized GB-mitigated perovskite films exhibit reduced nonradiative recombination, and their corresponding mesostructured PSCs show substantially enhanced device efficiency and long-term stability under illumination, humidity, or heat stress. The versatility of our strategy is also verified upon applying it to different categories of PSCs. Our discovery not only specifies a rarely addressed perspective concerning fundamental studies of perovskites at nanoscale but also opens a route to obtain high-quality solution-processed polycrystalline perovskites for high-performance optoelectronic devices.

12.
Research (Wash D C) ; 2022: 9781323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958109

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease globally, and there is currently no effective treatment for this condition. Excessive accumulation of reactive oxygen species (ROS) and neuroinflammation are major contributors to PD pathogenesis. Herein, ultrasmall nanoscale coordination polymers (NCPs) coordinated by ferric ions and natural product curcumin (Cur) were exploited, showing efficient neuroprotection by scavenging excessive radicals and suppressing neuroinflammation. In a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse PD model, such ultrasmall Fe-Cur NCPs with prolonged blood circulation and BBB traversing capability could effectively alleviate oxidative stress, mitochondrial dysfunction, and inflammatory condition in the midbrain and striatum to reduce PD symptoms. Thus, this study puts forth a unique type of therapeutics-based NCPs that could be used for safe and efficient treatment of PD with potential in clinical translation.

13.
Artigo em Inglês | MEDLINE | ID: mdl-35640048

RESUMO

Slow water oxidation kinetics and poor charge transport restrict the development of efficient BiVO4 photoanodes for photoelectrochemical (PEC) water splitting. Oxygen vacancy as an effective strategy can significantly enhance charge transport and improve conductivity in semiconductor photoanodes. Herein, we obtained BiVO4 photoanodes with appropriate oxygen vacancy by treating them with hypophosphite, which significantly improved the PEC performance. The synthesized photoanode exhibits a remarkable photocurrent density of 3.37 mA/cm2 at 1.23 V vs reversible hydrogen electrode with excellent stability. Interestingly, the performance improvement mainly originates from the oxygen vacancy rather than P doping. Our study provides insights in understanding the role of oxygen vacancy in PEC water splitting and strategies for designing more efficient photoelectrodes.

14.
Angew Chem Int Ed Engl ; 61(23): e202202556, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35297151

RESUMO

The electrochemical nitrate reduction reaction (NITRR) provides a promising solution for restoring the imbalance in the global nitrogen cycle while enabling a sustainable and decentralized route to source ammonia. Here, we demonstrate a novel electrocatalyst for NITRR consisting of Rh clusters and single-atoms dispersed onto Cu nanowires (NWs), which delivers a partial current density of 162 mA cm-2 for NH3 production and a Faradaic efficiency (FE) of 93 % at -0.2 V vs. RHE. The highest ammonia yield rate reached a record value of 1.27 mmol h-1 cm-2 . Detailed investigations by electron paramagnetic resonance, in situ infrared spectroscopy, differential electrochemical mass spectrometry and density functional theory modeling suggest that the high activity originates from the synergistic catalytic cooperation between Rh and Cu sites, whereby adsorbed hydrogen on Rh site transfers to vicinal *NO intermediate species adsorbed on Cu promoting the hydrogenation and ammonia formation.

15.
Research (Wash D C) ; 2021: 9812523, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888525

RESUMO

Mitochondrial dysfunction is commonly detected in individuals suffering from Parkinson's disease (PD), presenting within the form of excessive reactive oxygen species (ROS) generation as well as energy metabolism. Overcoming this dysfunction within brain tissues is an effective approach to treat PD, while unluckily, the blood-brain barrier (BBB) substantially impedes intracerebral drug delivery. In an effort to improve the delivery of efficacious therapeutic drugs to the brain, a drug delivery platform hydrogel (MAG-NCs@Gel) was designed by complexing magnolol (MAG)-nanocrystals (MAG-NCs) into the noninvasive thermosensitive poly(N-isopropylacrylamide) (PNIPAM) with self-gelation. The as-prepared MAG-NCs@Gel exhibited obvious improvements in drug solubility, the duration of residence with the nasal cavity, and the efficiency of brain targeting, respectively. Above all, continuous intranasal MAG-NCs@Gel delivery enabled MAG to cross the BBB and enter dopaminergic neurons, thereby effectively alleviating the symptoms of MPTP-induced PD. Taking advantage of the lower critical solution temperature (LCST) behavior of this delivery platform increases its viscoelasticity in nasal cavity, thus improving the efficiency of MAG-NCs transit across the BBB. As such, MAG-NCs@Gel represented an effective delivery platform capable of normalizing ROS and adenosine triphosphate (ATP) in the mitochondria of dopaminergic neurons, consequently reversing the mitochondrial dysfunction and enhancing the behavioral skills of PD mice without adversely affecting normal tissues.

16.
ACS Appl Mater Interfaces ; 13(46): 55080-55091, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34761678

RESUMO

Cuprous oxide (Cu2O) is a promising photocathode material for photoelectrochemical (PEC) water splitting. Recently, the PEC performances of Cu2O-based devices have been considerably improved by introducing nanostructures, semiconductor overlayers, and hydrogen evolution reaction (HER) catalysts. However, Cu2O devices still suffer from poor stability in aqueous solution, especially in strong acidic or alkaline conditions, despite the use of an intrinsically stable oxide overlayer as a protection layer. Thus, it is essential to fully understand the stability of the entire Cu2O photocathodes in these conditions for establishing suitable protection strategies to achieve durable PEC water splitting. In this work, the stability of bare and protected Cu2O nanowire (NW) photocathodes was evaluated in detail using microscopy techniques and compositional analyses. The insights gained in this work will guide the design and synthesis of durable photoelectrodes for PEC water splitting.

17.
ACS Appl Mater Interfaces ; 13(29): 34053-34063, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254770

RESUMO

Organic-inorganic metal halide perovskite materials have been widely studied as the light absorber for efficient photovoltaics. However, perovskite layers with defective nature are typically prepared with an uncontrollable crystallization process, intrinsically limiting further advance in device performance, and thus require delicate manipulation of crystallization processes and defect density. Here, we demonstrate an ammonium-assisted crystallization of perovskite absorbers during a two-step deposition to fabricate efficient solar cells. Addition of ammonium iodide (NH4I) is devised to manipulate the nucleation and crystal growth of perovskite, wherein the formation and transition of intermediate x[NH4+]•[PbI3]x- enables high-quality perovskite layers with an enlarged grain and reduced defect density. As a result, the perovskite solar cells (PSCs) achieve an average efficiency of 21.36% with a champion efficiency of 22.15% and improved environmental stability over 30 days in ambient conditions with varied relative humidity. These results with addition of NH4I provide an available and ingenious way to construct high-quality perovskite layers for efficient solar cells and will advance the commercial application of perovskite-based photovoltaics.

18.
ACS Appl Mater Interfaces ; 13(31): 37746-37760, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34318658

RESUMO

Mitochondrial dysfunction, which is directly involved in Parkinson's disease (PD), is characterized by the production of reactive oxygen species (ROS) and aberrant energy metabolism. Thus, regulating mitochondrial function might be an effective strategy to treat PD. However, the blood-brain barrier (BBB) presents a significant challenge for the intracerebral delivery of drugs. Here, we synthesized a zeolitic imidazolate framework 8-coated Prussian blue nanocomposite (ZIF-8@PB), which was encapsulated with quercetin (QCT), a natural antioxidant, to treat PD. ZIF-8@PB-QCT exhibited superior near-infrared radiation (NIR) response and penetrated through the BBB to the site of mitochondrial damage guided by the photothermal effect. In the mice model of PD, the QCT released from ZIF-8@PB-QCT significantly increased the adenosine triphosphate levels, reduced the oxidative stress levels, and reversed dopaminergic neuronal damage as well as PD-related behavioral deficits without any damage to the normal tissues. Furthermore, we explored the underlying neuroprotective mechanism of ZIF-8@PB-QCT that was mediated by activating the PI3K/Akt signaling pathway. Thus, combined with noninvasive NIR radiation, the biocompatible ZIF-8@PB-QCT nanocomposite could be used to treat neurodegenerative diseases.


Assuntos
Antioxidantes/uso terapêutico , Nanocompostos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Quercetina/uso terapêutico , Animais , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/toxicidade , Barreira Hematoencefálica/fisiologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Ferrocianetos/química , Ferrocianetos/efeitos da radiação , Ferrocianetos/uso terapêutico , Ferrocianetos/toxicidade , Humanos , Imidazóis/química , Imidazóis/uso terapêutico , Imidazóis/toxicidade , Raios Infravermelhos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Nanocompostos/química , Nanocompostos/efeitos da radiação , Nanocompostos/toxicidade , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Quercetina/química , Quercetina/farmacocinética , Quercetina/toxicidade , Ratos Sprague-Dawley , Zeolitas/química , Zeolitas/uso terapêutico , Zeolitas/toxicidade
19.
Nanoscale ; 13(6): 3588-3593, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33538738

RESUMO

Copper-based materials could produce a series of products through the CO2 electroreduction reaction, and are regarded as the most promising catalysts to produce fuels and value-added chemicals using renewable energy sources. However, the competitive hydrogen evolution reaction (HER) is a daunting challenge for the selectivity of carbonaceous products. Here, a hydrophobic electrode surface was constructed by modifying the CuO nanowire electrode with a thick Nafion overlayer, which exhibited enhanced selectivity toward the CO2 RR (especially for CO) and suppressed HER activity. This work highlights the importance of hydrophobicity in the selectivity of CO2 reduction and hints at the additional role of Nafion in powder-based catalyst electrodes.

20.
Biomater Sci ; 9(5): 1705-1715, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33427264

RESUMO

There has been an exponential increase in the rate of incidence of Parkinson's disease (PD) with aging in the global population. PD, the second most common neurodegenerative disorder, results from damaged dopamine neurons in the substantia nigra pars compacta (SNpc), along with the deposition of abnormal α-synuclein (α-Syn), and the progressive degeneration of neurons in striatal regions. Despite extensive investigations to understand the pathophysiology of PD to develop effective therapies to restrict its progression, there is currently no cure for PD. Puerarin (Pue) is a natural compound with remarkable anti-PD properties. However, its poor pharmacological properties, including poor water solubility, inadequate bioavailability, and incomplete penetration of the blood-brain barrier (BBB) have restricted its use for the treatment of PD. Nevertheless, advancements in nanotechnology have revealed the potential advantages of targeted drug delivery into the brain to treat PD. Here, we used Pue-loaded graphene oxide (GO) nanosheets, which have an excellent drug-loading ability, modifiable surface functional groups, and good biocompatibility. Then, Pue was transported across the BBB into the brain using lactoferrin (Lf) as the targeting ligand, which could bind to the vascular endothelial receptor on the BBB. In vivo and in vitro results indicated that this multifunctional brain targeted drug delivery system (Lf-GO-Pue) was an effective and safe therapy for PD.


Assuntos
Doença de Parkinson , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Grafite , Humanos , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...