Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39042151

RESUMO

Intergeneric hybridization greatly reshapes regulatory interactions among allelic and non-allelic genes. However, their effects on growth diversity remain poorly understood in animals. In this study, we conducted whole-genome sequencing and RNA sequencing (RNA-seq) analyses in diverse hybrid varieties resulting from the intergeneric hybridization of goldfish (Carassius auratus red var.) and common carp (Cyprinus carpio). These hybrid individuals were characterized by distinct mitochondrial genomes and copy number variations. Through a weighted gene correlation network analysis, we identified 3693 genes as candidate growth-regulated genes. Among them, the expression of 3672 genes in subgenome R (originating from goldfish) displayed negative correlations with growth rate, whereas 20 genes in subgenome C (originating from common carp) exhibited positive correlations. Notably, we observed intriguing patterns in the expression of slc2a12 in subgenome C, showing opposite correlations with body weight that changed with water temperatures, suggesting differential interactions between feeding activity and weight gain in response to seasonal changes for hybrid animals. In 40.31% of alleles, we observed dominant trans-regulatory effects in the regulatory interaction between distinct alleles from subgenomes R and C. Integrating analyses of allelic-specific expression and DNA methylation data revealed that the influence of DNA methylation on both subgenomes shapes the relative contribution of allelic expression to the growth rate. These findings provide novel insights into the interaction of distinct subgenomes that underlie heterosis in growth traits and contribute to a better understanding of multiple allele traits in animals.

2.
Front Genet ; 14: 998775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923790

RESUMO

Introduction: The correct pairing and separation of homologous chromosomes during meiosis is crucial to ensure both genetic stability and genetic diversity within species. In allodiploid organisms, synapsis often fails, leading to sterility. However, a gynogenetic allodiploid hybrid clone line (GDH), derived by crossing red crucian carp (Carassius auratus ♀) and common carp (Cyprinus carpio ♂), stably produces diploid eggs. Because the GDH line carries 100 chromosomes with 50 chromosomes from the red crucian carp (RCC; ♀, 2n = 2x = 100) and 50 chromosomes from the common carp (CC; C. carpio L., ♂, 2n = 2x = 100), it is interesting to study the mechanisms of homologous chromosome pairing during meiosis in GDH individuals. Methods: By using fluorescence in situ hybridization (FISH) with a probe specific to the red crucian carp to label homologous chromosomes, we identified the synaptonemal complex via immunofluorescence assay of synaptonemal complex protein 3 (SCP3). Results: FISH results indicated that, during early ovarian development, the GDH oogonium had two sets of chromosomes with only one set from Carassius auratus, leading to the failure formation of normal bivalents and the subsequently blocking of meiosis. This inhibition lasted at least 5 months. After this long period of inhibition, pairs of germ cells fused, doubling the chromosomes such that the oocyte contained two sets of chromosomes from each parent. After chromosome doubling at 10 months old, homologous chromosomes and the synaptonemal complex were identified. Discussion: Causally, meiosis proceeded normally and eventually formed diploid germ cells. These results further clarify the mechanisms by which meiosis proceeds in hybrids.

3.
Mol Omics ; 18(10): 967-976, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36349986

RESUMO

Triploid crucian carp (TCC) is a kind of artificially bred fish with huge economic value to China. It has several excellent characteristics, such as fast growth, strong disease resistance and delicious taste. However, as a regionally specific fish, the underlying molecular mechanisms of these characteristics are largely unknown. In this study, we performed quantitative proteomics on the muscle tissues of TCC and its parents, allotetraploid (♂), red crucian carp (♀) and common carp. Combined with multiple bioinformatic analysis, we found that the taste of TCC can be mainly attributed to umami amino acid-enriched proteins such as PURBA, PVALBI and ATP5F1B, and that its rapid growth can be mainly ascribed to the high expression and regulation of metabolism-related proteins such as NDUFS1, ENO1A and CS. These play significant roles in substrate and energy metabolism, as well as in bias transformation. Subsequently, we identified several proteins, including MDH1AA, GOT1 and DLAT, that may serve as potential regulators of innate immunity by regulating the biosynthesis and transformation of significant antibiotics and antimicrobial peptides. In conclusion, this study can serve as a significant reference for similar investigations and shed light on the molecular and biological functions of individual proteins in TCC muscle tissue.


Assuntos
Carpas , Animais , Carpas/genética , Triploidia , Proteômica , Músculos , China
4.
BMC Biol ; 20(1): 200, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100845

RESUMO

BACKGROUND: Interspecific postzygotic reproduction isolation results from large genetic divergence between the subgenomes of established hybrids. Polyploidization immediately after hybridization may reset patterns of homologous chromosome pairing and ameliorate deleterious genomic incompatibility between the subgenomes of distinct parental species in plants and animals. However, the observation that polyploidy is less common in vertebrates raises the question of which factors restrict its emergence. Here, we perform analyses of the genome, epigenome, and gene expression in the nascent allotetraploid lineage (2.95 Gb) derived from the intergeneric hybridization of female goldfish (Carassius auratus, 1.49 Gb) and male common carp (Cyprinus carpio, 1.42 Gb), to shed light on the changes leading to the stabilization of hybrids. RESULTS: We firstly identify the two subgenomes derived from the parental lineages of goldfish and common carp. We find variable unequal homoeologous recombination in somatic and germ cells of the intergeneric F1 and allotetraploid (F22 and F24) populations, reflecting high plasticity between the subgenomes, and rapidly varying copy numbers between the homoeolog genes. We also find dynamic changes in transposable elements accompanied by genome merger and duplication in the allotetraploid lineage. Finally, we observe the gradual decreases in cis-regulatory effects and increases in trans-regulatory effects along with the allotetraploidization, which contribute to increases in the symmetrical homoeologous expression in different tissues and developmental stages, especially in early embryogenesis. CONCLUSIONS: Our results reveal a series of changes in transposable elements, unequal homoeologous recombination, cis- and trans-regulations (e.g. DNA methylation), and homoeologous expression, suggesting their potential roles in mediating adaptive stabilization of regulatory systems of the nascent allotetraploid lineage. The symmetrical subgenomes and homoeologous expression provide a novel way of balancing genetic incompatibilities, providing a new insight into the early stages of allopolyploidization in vertebrate evolution.


Assuntos
Carpas , Cyprinidae , Animais , Cyprinidae/genética , Elementos de DNA Transponíveis , Hibridização Genética , Poliploidia
5.
Dev Comp Immunol ; 135: 104476, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35718131

RESUMO

As an ancient allotetraploid species, goldfish (Carassius auratus) have two sets of subgenomes. In this study, immunoglobulin heavy-chain (IGH) genes were cloned from the red crucian carp (Carassius auratus red var.), and the corresponding loci were identified in the gynogenetic diploid red crucian carp (GRCC) genome as well as the genomes of three other goldfish strains (Wakin, G-12, and CaTCV-1). Examination showed that each goldfish strain possessed two sets of parallel IGH loci: a complete IGHA locus and a degenerated IGHB locus that was nearly 40 × smaller. In the IGHA locus, multiple τ chain loci were arranged in tandem between the µ&δ chain locus and the variable genes, but no τ-like genes were found in the IGHB locus.


Assuntos
Carpas , Carpa Dourada , Animais , Carpas/genética , Diploide , Genoma , Carpa Dourada/genética , Imunoglobulinas/genética
6.
Front Genet ; 13: 880591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518352

RESUMO

Hybridization is a traditional and effective strategy to alter the genotypes and phenotypes of the offspring, and distant hybridization is a useful strategy to generate polyploids in fish. In this study, goldfish (Carassius auratus, GF, 2n = 100) and Bleeker's yellow tail (Xenocypris davidi Bleeker, YT, 2n = 48), which belong to different subfamilies, were crossed with each other. The cross of female GF × male YT successfully obtained hybrid offspring (GFYT hybrids), while the cross of female YT × male GF was lethal, and all the fertilized eggs stopped developing before the neurula stage of embryogenesis. All GFYT hybrids possessed 124 chromosomes (3n = 124) with two sets from GF and one set from YT. The measurable and countable traits of GFYT hybrids were identified, and the genetic characteristics of 5S rDNA between GFYT hybrids and their parents were also revealed. There were, respectively, four and three different 5S rDNA types in GF (assigned as GF-Ⅰ∼Ⅳ) and YT (assigned as YT-Ⅰ∼Ⅲ), and GFYT hybrids specifically inherited YT-Ⅰ and YT-Ⅱ 5S rDNA types from YT and GF-Ⅲ and GF-Ⅳ from GF. In addition, there were only testis-like and fat-like gonads been found in GFYT hybrids. Interestingly, there were pyknotic and heteromorphous chromatin and invaginated cell membrane observed in the spermatids of testis-like gonads, but no mature sperm were found. Furthermore, TUNEL assays indicated that, compared with control, apparent apoptotic signals, which were mainly distributed around spermatid regions, were detected in the testis-like gonads, and the expression of apoptosis pathway-related genes including p53, bcl-2, bax, and caspase9 was significantly upregulated. Moreover, the expression of meiosis-related genes including spo11, dmc1, and rad51 showed an abnormally high expression, but mns1 and meig1, two key genes involved in the maturation of spermatid, were extremely downregulated. In brief, this is the first report of allotriploid via distant hybridization between GF and YT that possessing different chromosome numbers in vertebrates. The obtainment of GFYT hybrids not only harbors potential benefits and application in aquaculture but also further extends the understanding of the influence of hybridization and polyploidization on the genomic constitution of the hybrid offspring. Furthermore, they can be used as a model to test the origin and consequences of polyploidization and served as a proper resource to study the underlying mechanisms of spermatogenesis dysfunctions.

7.
J Anim Sci Biotechnol ; 13(1): 44, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418106

RESUMO

BACKGROUND: Sperm abnormalities are one of the primary factors leading to male sterility, but their pathogenesis is still unclear. Although miRNAs are suggested to exert important roles in the regulation of spermatogenesis at both transcriptional and posttranscriptional levels, little is currently known regarding the regulation of sperm flagella assembly by microRNAs (miRNAs). The role of miRNAs in the development of sperm abnormalities in sterile triploid fish has not been studied. RESULTS: In this study, we found that miR-199-5p was widely expressed in all detected tissues of different-ploidy crucian carp. As one of the testis-specific candidate markers, Tekt1 was predominantly expressed in the testis. Quantitative real-time PCR (qRT-PCR) analyses showed that the expression trend of miR-199-5p was exactly opposite to that of Tekt1. Through bioinformatics analysis, we identified a putative miR-199-5p binding site in the Tekt1 mRNA. We further identified Tekt1 as a target of miR-199-5p using luciferase reporter assay. Finally, we confirmed that miR-199-5p was necessary for sperm flagellar assembly and spermatogenesis in vivo via intraperitoneal injection of miR-199-5p antagomir or agomir in diploid red crucian carp. Moreover, miR-199-5p gain-of-function could lead to spermatids apoptosis and abnormal spermatozoa structure, which is similar to that of allotriploid crucian carp. CONCLUSIONS: Our studies suggested that abnormally elevated miR-199-5p inhibited the sperm flagella formation in spermiogenesis by negatively regulating the expression of Tekt1, thereby causing sperm abnormalities of male allotriploid crucian carp.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35131431

RESUMO

Aeromonas hydrophila can threaten the survival of freshwater fish. In this study, A. hydrophila challenge could induce tissue damage, promote antioxidant imbalance as well as alter the transcript levels of oxidative stress indicators, apoptotic genes and metabolic enzyme genes in kidney of red crucian carp (RCC). Metabolomics analysis revealed that A. hydrophila challenge had a profound effect on amino acid metabolism and lipid metabolism. In addition, we further identified dipeptides, fatty acid derivatives, cortisol, choline and tetrahydrocortisone as crucial biomarkers in kidney of RCC subjected to A. hydrophila infection. These results highlighted the importance of metabolic strategy against bacterial infection.


Assuntos
Aeromonas hydrophila , Doenças dos Peixes/microbiologia , Carpa Dourada , Infecções por Bactérias Gram-Negativas/veterinária , Animais , Regulação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/microbiologia , Rim/patologia , Espécies Reativas de Oxigênio
9.
Fish Shellfish Immunol ; 120: 620-632, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34968709

RESUMO

FerL, a multifunctional iron-storage polypeptide, not only exhibited a regulatory role in iron metabolism, but also participated in the regulation of fish immunity. In this study, ORF sequence of WR-FerL was 522 bp, encoding 173 amino acid residues. Tissue-specific analysis revealed that the highest expression of WR-FerL was detected in spleen. A. hydrophila challenge and LPS stimulation could sharply enhance WR-FerL mRNA expression in tissues and fish cells, respectively. Purified WR-FerL fusion peptide exhibited in vitro binding activity to A. hydrophila and endotoxin, limited bacterial dissemination to tissues as well as attenuated A. hydrophila-induced production of pro-inflammatory cytokines. Moreover, WR-FerL overexpression could abrogate NF-κB and TNFα promoter activity in fish cells. These results indicated that WR-FerL could play an important role in host defense against A. hydrophila infection.


Assuntos
Carpas , Ferritinas , Doenças dos Peixes , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila , Animais , Carpas/genética , Carpas/imunologia , Ferritinas/genética , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata/genética , Ferro
10.
Proteomics ; 22(4): e2100115, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713569

RESUMO

Allotetraploid is a new species produced by distant hybridization between red crucian carp (Carassius auratus red var., abbreviated as RCC) and common carp (Cyprinus carpio L., abbreviated as CC). There is a significant difference in growth rate between allotetraploid and its parents. However, the underlying molecular mechanism is largely unknown. In this study, to find direct evidence associated with metabolism and growth rate in protein level, we performed quantitative proteomics analysis on liver tissues between allotetraploid and its parents. A total of 2502 unique proteins were identified and quantified by SWATH-MS in our proteomics profiling. Subsequently, comprehensive bioinformatics analyses including gene ontology enrichment analysis, pathway and network analysis, and protein-protein interaction analysis (PPI) were conducted based on differentially expressed proteins (DEPs) between allotetraploid and its parents. The results revealed several significant DEPs involved in metabolism pathways in liver. More specifically, the integrative analysis highlighted that the DEPs ACSBG1, OAT, and LDHBA play vital roles in metabolism pathways including "pentose phosphate pathway," "TCA cycle," and "glycolysis and gluconeogenesis." These could directly affect the growth rate in fresh water fishes by regulating the metabolism, utilization, and exchange of substance and energy. Since the liver is the central place for metabolism activity in animals, we firstly established the comprehensive and quantitative proteomics knowledge base for liver tissue from freshwater fishes, our study may serve as an irreplaceable reference for further studies regarding fishes' culture and growth.


Assuntos
Carpas , Animais , Carpa Dourada/genética , Fígado , Proteômica
11.
Sci China Life Sci ; 65(6): 1213-1221, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34757543

RESUMO

Distant hybridization is an important technique in fish genetic breeding. In this study, based on the establishment of an allodiploid fish lineage (BT, 2n=48, F1-F6) derived from distant hybridization between female Megalobrama amblycephala (BSB, 2n=48) and male Culter alburnus (TC, 2n=48), and the backcross progeny (BTB, 2n=48) derived by backcrossing female F1 of BT to male BSB, an improved hybrid bream (BTBB, 2n=48) was obtained by backcrossing BTB (♀) to BSB (♂). Moreover, the morphological and genetic characteristics of BTBB individuals were investigated; BTBB was similar to BSB in appearance but had a higher body height than BSB. The study results regarding chromosome numbers and DNA content indicated that BTBB is a diploid hybrid fish. The 5S rDNA and Hox gene of BTBB were inherited from the original parents. Gonadal development in BTBB was normal. On the other hand, BTBB had a faster growth rate, higher muscle protein level, and lower muscle carbohydrate level than BSB. Hence, bisexual fertile BTBB is promoted and can be applied as a high-quality fish, and it can also be used as a new fish germplasm resource to develop high-quality fish further. Thus, this study is of great significance for fish genetic breeding.


Assuntos
Cyprinidae , Cipriniformes , Animais , Cromossomos , Cyprinidae/genética , Cipriniformes/genética , Diploide , Feminino , Hibridização Genética , Masculino , Ploidias
12.
Fish Shellfish Immunol ; 120: 547-559, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923115

RESUMO

Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila infection could decrease blood cell numbers, promote blood cell damage as well as alter the levels of alkaline phosphatase (ALP), lysozyme (LZM), aspartate aminotransferase (AST), total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) in immune-related tissues of red crucian carp (RCC, 2 N = 100) and triploid cyprinid fish (3 N fish, 3 N = 150). In addition, the significant alternation of antioxidant status was observed in PBMCs isolated from RCC and 3 N following LPS stimulation. The core differential expression genes (DEGs) involved in apoptosis, immunity, inflammation and cellular signals were co-expressed differentially in RCC and 3 N following A. hydrophila challenge. NOD-like receptor (NLR) signals appeared to play a critical role in A. hydrophila-infected fish. DEGs of NLR signals in RCCah vs RCCctl were enriched in caspase-1-dependent Interleukin-1ß (IL-1ß) secretion, interferon (IFN) signals as well as cytokine activation, while DEGs of NLR signals in 3Nah vs 3Nctl were enriched in caspase-1-dependent IL-1ß secretion and antibacterial autophagy. These results highlighted the differential signal regulation of different ploidy cyprinid fish to cope with bacterial infection.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Transcriptoma , Aeromonas hydrophila , Animais , Antioxidantes , Células Sanguíneas , Carpas/genética , Carpas/imunologia , Caspases , Suplementos Nutricionais , Resistência à Doença , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata , Ploidias
13.
Front Genet ; 12: 783014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868272

RESUMO

The spermatozoa of triploid gynogenetic crucian carp (Carassius auratus) (3nDTCC) possess a spermatogenesis process with a normal genetic background. However, the genetic materials of these spermatozoa do not completely inherit gynogenetic progeny in general. Understanding the intrinsic mechanism may be helpful for developing breeding strategies of gynogenetic fishes. In this study, the spermatozoa ultrastructure was systematically studied in diploid red crucian carp and 3nDTCC to demonstrate their cytological structural differences. In addition, the artificial breeding tests of 3nDTCC(♀) with different ploidy spermatozoa were performed to verify the contributions of genetic materials from 3nDTCC spermatozoa to the gynogenesis progeny. Furthermore, the mRNA expression of centriole-related genes (i.e., cep57, cetn1, rootletin, and nek2) involved in spermatozoa packaging was also determined by quantitative real-time PCR (qPCR) to illustrate the molecular expression characteristics of the spermatozoa packaging process in 3nDTCC. The results reveal the adaptive features of spermatozoa in 3nDTCC, including the loose midpiece structure, abnormal head structure, and abnormal expression of centriole-related genes, which may influence the motility of spermatozoa and make it not involved normally in the genetic composition of the gynogenesis offspring.

14.
Fish Shellfish Immunol ; 118: 369-384, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34571155

RESUMO

Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila challenge could promote the erythrocyte hemolysis, increase free hemoglobin (FHB) level and generate malondialdehyde (MDA) production in plasma but decrease the levels of total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT), alkaline phosphatase (ALP) and lysozyme (LZM) of red crucian carp (RCC, 2 N = 100) and triploid hybrid fish (3 N fish, 3 N = 150) following A. hydrophila challenge. Elevated expression levels of heat shock protein 90 alpha (HSP90α), matrix metalloproteinase 9 (MMP-9), free fatty acid receptor 3 (FFAR3), paraoxonase 2 (PON2) and cytosolic phospholipase A2 (cPLA2) were observed in A. hydrophila-infected fish. In addition, A. hydrophila challenge could significantly increase expressions of cortisol, leucine, isoleucine, glutamate and polyunsaturated fatty acids (PUFAs) in RCC and 3 N, while glycolysis and tricarboxylic acid cycle appeared to be inactive. We identified differential fatty acid derivatives and their metabolic networks as crucial biomarkers from metabolic profiles of different ploidy cyprinid fish subjected to A. hydrophila infection. These results highlighted the comparative metabolic strategy of different ploidy cyprinid fish against bacterial infection.


Assuntos
Carcinoma de Células Renais , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Neoplasias Renais , Aeromonas hydrophila , Animais , Carpas/genética , Eritrócitos , Proteínas de Peixes/genética , Carpa Dourada , Infecções por Bactérias Gram-Negativas/veterinária , Hemólise , Triploidia
15.
Front Genet ; 12: 717871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567072

RESUMO

Polyploidy occurs naturally in fish; however, the appearance of these species is an occasional and gradual process, which makes it difficult to trace the changes in phenotypes, genotypes, and regulation of gene expression. The allotetraploid hybrids (4nAT) of red crucian carp (RCC; ♀) × common carp (CC; ♂) generated from interspecies crossing are a good model to investigate the initial changes after allopolyploidization. In the present study, we focused on the changes in the active sites of the testicular transcriptome of the allotetraploid by localization of RNA Pol II CTD YSPTSPS (phospho S5) using immunofluorescence and RNA-seq data via bioinformatic analysis. The results showed that there was no significant difference in signal counts of the RNA Pol II CTD (S5) between the different types of fish at the same stages, including RCC, CC, 2nF1, and 4nAT, which means that the number of transcriptionally active sites on germ cell chromosomes was not affected by the increase in chromosome number. Similarly, RNA-seq analysis indicated that in the levels of chromosomes and 10-kb regions in the genome, there were no significant changes in the highly active sites in RCC, 2nF1, and 4nAT. These findings suggest that at the beginning of tetraploid origin, the active transcriptome site of 4nAT in the testis was conserved in the regions of the genome compared to that in RCC and 2nF1. In conclusion, 4nAT shared a similar gene expression model in the regions of the genome with RCC and 2nF1 with significantly different expression levels.

16.
Artigo em Inglês | MEDLINE | ID: mdl-34461291

RESUMO

Ferritin H can participate in the regulation of fish immunity. Tissue-specific analysis revealed that the highest expressions of Ferritin H in parental species were observed in spleen, while peaked level of Ferritin H mRNA in hybrid fish was observed in liver. In addition, A. hydrophila challenge could sharply enhance their Ferritin H mRNA expression in liver, kidney and spleen. To further investigate their roles in immune regulation, their Ferritin H fusion proteins were produced in vitro. Ferritin H fusion proteins could exhibit a direct binding activity to A. hydrophila and endotoxin in a dose-dependent manner, restrict dissemination of A. hydrophila to tissues and abrogate inflammatory cascades. Moreover, treatment with Ferritin H fusion proteins could reduce A. hydrophila-induced lipid peroxidation. These results indicated that Ferritin H in hybrid fish elicited a similar immune regulation of A. hydrophila-induced inflammatory signals in comparison with those of its parents.


Assuntos
Apoferritinas/imunologia , Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Aeromonas hydrophila/imunologia , Animais , Apoferritinas/genética , Apoferritinas/metabolismo , Carpas/microbiologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Doenças dos Peixes/patologia , Proteínas de Peixes/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Baço/imunologia , Baço/metabolismo , Baço/patologia
17.
Fish Shellfish Immunol ; 116: 1-11, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34174452

RESUMO

NK-lysin, an effector of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), not only exhibits cytotoxic effect in fish cells, but also participates in the immune defense against pathogenic infection. In this study, ORF sequences of RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin were 369 bp. Tissue-specific analysis revealed that the highest expressions of RCC-NK-lysin and WCC-NK-lysin were observed in gill, while the peaked level of WR-NK-lysin mRNA was observed in spleen. A. hydrophila infection sharply increased RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin mRNA expression in liver, trunk kidney and spleen. In addition, elevated levels of NK-lysin mRNA were observed in cultured fin cell lines of red crucian carp (RCC), white crucian carp (WCC) and their hybrid offspring (WR) after Lipopolysaccharide (LPS) challenge. RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin exerted regulatory roles in inducing ROS generation, modulating mitochondrial membrane potential, decreasing fish cell viability and antagonizing survival signalings, respectively. RCC/WCC/WR-NK-lysin-overexpressing fish could up-regulate expressions of inflammatory cytokines and decrease bacterial loads in spleen. These results indicated that NK-lysin in hybrid fish contained close sequence similarity to those of its parents, possessing the capacities of cytotoxicity and immune defense against bacterial infection.


Assuntos
Aeromonas hydrophila , Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Proteolipídeos/imunologia , Nadadeiras de Animais/citologia , Animais , Carpas/genética , Sobrevivência Celular , Células Cultivadas , Quimera , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Expressão Gênica , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Rim/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Potencial da Membrana Mitocondrial , Proteolipídeos/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Baço/metabolismo , Baço/microbiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-34052412

RESUMO

Bacterial LPS is a heat-stable endotoxin and wall components of gram negative bacteria, which can exhibit a toxicological effect on physiology and biochemical activities of fish. In this study, we investigated the effect of LPS exposure on cell viability, oxidative stress, caspase activity and immune-related gene expressions in cultured fin cell lines of red crucian carp, white crucian carp and their hybrid offspring. LPS stimulation could reduce fish cell viability, whereas gene expression levels and promoter activities in inflammatory signals increased dramatically. Moreover, enhanced levels of intracellular oxidative stress and decreased levels of mitochondrial membrane potential (MMP) were observed in LPS-induced fish cells. N-Acetyl-L-cysteine (NAC) could alleviate LPS-stimulated reactive oxygen species (ROS) generation and caspase-3 activity in fish cells. These results suggested that ROS-mediated cytotoxic stress was involved in LPS-induced inflammation and mitochondrial damage in cultured fish cells.


Assuntos
Apoptose/efeitos dos fármacos , Carpas/fisiologia , Fibroblastos/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Nadadeiras de Animais/citologia , Animais , Carpas/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Hibridização Genética , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio
19.
Artigo em Inglês | MEDLINE | ID: mdl-33383192

RESUMO

Ferritin H can participate in the regulation of teleostean immunity. ORF sequences of RCC/WCC/WR-ferritin H were 609 bp, while WR-ferritin H gene possessed chimeric fragments or offspring-specific mutations. In order to elucidate regulation of immune-related signal transduction, three fibroblast-like cell lines derived from caudal fin of red crucian carp (RCC), white crucian carp (WCC) and their hybrid offspring (WR) were characterized and designated as RCCFCs, WCCFCs and WRFCs. A sharp increase of ferritin H mRNA was observed in RCCFCs, WCCFCs and WRFCs following lipopolysaccharide (LPS) challenge. Overexpression of RCC/WCC/WR-ferritin H can decrease MyD88-IRAK4 signal and antagonize NF-κB, TNFα promoter activity in RCCFCs, WCCFCs and WRFCs, respectively. These results indicated that ferritin H in hybrid offspring harbors highly-conserved domains with a close sequence similarity to those of its parents, playing a regulatory role in inflammatory signals.


Assuntos
Apoferritinas/metabolismo , Carpas/genética , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Apoferritinas/genética , Células Cultivadas , Clonagem Molecular , Regulação para Baixo , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Conformação Proteica , Regulação para Cima
20.
Sci China Life Sci ; 63(9): 1287-1296, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32548694

RESUMO

Gynogenesis is an important breeding method in aquaculture and has been widely applied to many fish species. If gynogenetic progenies are to inherit paternal partial genomic DNA, this will increase genetic variation and will provide a useful outcome for breeding. In this study, we investigated the genetic variation in homeobox (Hox) gene clusters (HoxA4a, HoxA9a, HoxA11b, HoxB1b, HoxC4a, HoxC6b, and HoxD10a) among koi carp (Cyprinus carpio haematopterus, KOC; the stimulation sperm source), grass carp (Ctenopharyngodon idellus), and gynogenetic grass carp (GGC). We found paternal DNA (a special DNA fragment and HoxC6b) derived from KOC and a recombinant gene belonging to HoxC6b in GGC. We are the first to report the recombinant HoxC6b in GGC. Our study provides further evidence for paternal DNA transmission to gynogenetic progenies, which is a finding with great significance for the genetic breeding of fish.


Assuntos
Carpas/genética , DNA Recombinante/genética , Genes Homeobox/genética , Animais , Transporte Biológico , Cruzamento , Cromossomos/genética , Evolução Molecular , Feminino , Genoma , Genômica , Masculino , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA