Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(3): 3696-3706, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091222

RESUMO

Intercropping crops with hyperaccumulators is a proven model for coupling crop safety production and soil heavy metal remediation. And both crop genotypes and soil properties might have great impacts on the effect of intercropping. Therefore, a greenhouse pot experiment was designed to investigate the effects of intercropping different tomato varieties with the cadmium (Cd) hyperaccumulator Sedum alfredii Hance (S. alfredii Hance) on different soils. The results showed that intercropping promoted Cd uptake by S. alfredii Hance and reduced soil total Cd concentration. There was no significant effect of intercropping on tomato yield and Cd concentration. Different tomato varieties had different effects on tomato yield and Cd concentration. The yield of cherry tomato was 1.04 times higher than that of common large fruit tomato, while the Cd concentration in all parts was lower than that of common large fruit tomato. Different typical zonal soils had different effects on tomato production and soil remediation. And among the four studied soils, tomatoes grown on ZJ soil had the highest yields and lowest fruit Cd concentration, making them more suitable for remediation coupled with safety production. This study provided a comprehensive analysis of tomato production benefits and soil remediation effects, which could be useful as a guide in vegetable safety production coupled with soil remediation practices in the Cd-contaminated greenhouse.


Assuntos
Sedum , Poluentes do Solo , Solanum lycopersicum , Cádmio/análise , Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Produção Agrícola
2.
Environ Toxicol ; 39(1): 435-443, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792543

RESUMO

Soluble E-cadherin (sE-cad) is an 80 kDa fragment derived from E-cadherin that is shed from the cell surface through proteolytic cleavage and is a biomarker in various cancers that promotes invasion and migration. Alveolar epithelial destruction, aberrant lung fibroblast migration and inflammation contribute to pulmonary fibrosis. Here, we hypothesized that E-cadherin plays an important role in lung fibrosis. In this study, we found that E-cadherin was markedly increased in the bronchoalveolar lavage fluid (BALF) and serum of mice with pulmonary fibrosis and that blocking sE-cad with HECD-1, a neutralizing antibody targeting the ectodomain of E-cadherin, effectively inhibited myofibroblast accumulation and collagen deposition in the lungs after bleomycin (BLM) exposure. Moreover, transforming growth factor-ß (TGF-ß1) induced the shedding of sE-cad from A549 cells, and treatment with HECD-1 inhibited epithelial-mesenchymal transition (EMT) stimulated by TGF-ß1. Fc-E-cadherin (Fc-Ecad), which is an exogenous form of sE-cad, robustly promoted lung fibroblast migration. E-cadherin participates in bleomycin (BLM)-induced lung fibrosis by promoting EMT in the alveolar epithelium and fibroblast activation. E-cadherin may be a novel therapeutic target for lung fibrosis.


Assuntos
Caderinas , Transição Epitelial-Mesenquimal , Fibrose Pulmonar , Animais , Camundongos , Bleomicina/toxicidade , Caderinas/metabolismo , Fibroblastos/metabolismo , Pulmão , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
3.
Environ Toxicol ; 38(6): 1431-1444, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36883729

RESUMO

The airway epithelial barrier dysfunction plays a crucial role in pathogenesis of asthma and causes the amplification of downstream inflammatory signal pathway. S100 calcium binding protein A4 (S100A4), which promotes metastasis, have recently been discovered as an effective inflammatory factor and elevated in bronchoalveolar lavage fluid in asthmatic mice. Vascular endothelial growth factor-A (VEGFA), is considered as vital regulator in vascular physiological activities. Here, we explored the probably function of S100A4 and VEGFA in asthma model dealt with house dust mite (HDM) extracts. Our results showed that secreted S100A4 caused epithelial barrier dysfunction, airway inflammation and the release of T-helper 2 cytokines through the activation of VEGFA/VEGFR2 signaling pathway, which could be partial reversed by S100A4 polyclonal antibody, niclosamide and S100A4 knockdown, representing a potential therapeutic target for airway epithelial barrier dysfunction in asthma.


Assuntos
Asma , Pyroglyphidae , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular , Asma/induzido quimicamente , Dermatophagoides pteronyssinus , Citocinas , Modelos Animais de Doenças
4.
BMC Pulm Med ; 19(1): 218, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747880

RESUMO

BACKGROUND: The dysfunction of airway epithelial barrier is closely related to the pathogenesis of asthma. Secreted Hsp90α participates in inflammation and Hsp90 inhibitor protects endothelial dysfunction. In the current study, we aimed to explore the role of secreted Hsp90α in asthmatic airway epithelial barrier function. METHODS: Male BALB/c mice were sensitized and challenged with HDM to generate asthma model. The 16HBE and Hsp90α-knockdown cells were cultured and treated according to the experiment requirements. Transepithelial Electric Resistance (TEER) and permeability of epithelial layer in vitro, distribution and expression of junction proteins both in vivo and in vitro were used to evaluate the epithelial barrier function. Western Blot was used to evaluate the expression of junction proteins and phosphorylated AKT in cells and lung tissues while ELISA were used to evaluate the Hsp90α expression and cytokines release in the lung homogenate. RESULTS: HDM resulted in a dysfunction of airway epithelial barrier both in vivo and in vitro, paralleled with the increased expression and release of Hsp90α. All of which were rescued in Hsp90α-knockdown cells or co-administration of 1G6-D7. Furthermore, either 1G6-D7 or PI3K inhibitor LY294002 suppressed the significant phosphorylation of AKT, which caused by secreted and recombinant Hsp90α, resulting in the restoration of epithelial barrier function. CONCLUSIONS: Secreted Hsp90α medicates HDM-induced asthmatic airway epithelial barrier dysfunction via PI3K/AKT pathway, indicating that anti-secreted Hsp90α therapy might be a potential treatment to asthma in future.


Assuntos
Asma/fisiopatologia , Brônquios/efeitos dos fármacos , Cromonas/farmacologia , Células Epiteliais/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Morfolinas/farmacologia , Animais , Asma/tratamento farmacológico , Brônquios/enzimologia , Brônquios/imunologia , Caderinas/metabolismo , Linhagem Celular , Citocinas/metabolismo , Impedância Elétrica , Células Epiteliais/enzimologia , Células Epiteliais/imunologia , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP90/genética , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Pyroglyphidae/imunologia , Mucosa Respiratória/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 313(6): L1006-L1015, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28860147

RESUMO

Pulmonary fibrosis is characterized by lung fibroblast activation and ECM deposition and has a poor prognosis. Heat shock protein 90 (Hsp90) participates in organ fibrosis, and extracellular Hsp90α (eHsp90α) promotes fibroblast activation and migration. This study aimed to investigate whether a selective anti-Hsp90α monoclonal antibody, 1G6-D7, could attenuate lung fibrosis and whether 1G6-D7 presents a protective effect by inactivating the profibrotic pathway. Our results showed that eHsp90α was increased in mice with BLM-induced pulmonary fibrosis and that 1G6-D7 attenuated inflammation and collagen deposition in the lung. TGF-ß1 induced eHsp90α secretion, concomitantly promoting HFL-1 activation and ECM synthesis. 1G6-D7-mediated inhibition of eHsp90α significantly blocked these effects, meanwhile inhibiting downstream profibrotic pathways such as ERK, Akt, and P38. Human recombinant (hr)Hsp90α mimicked the effects of TGF-ß1, by activating profibrotic pathways and by upregulating LRP-1. Moreover, ERK inhibition effectively blocked the effect of (hr)Hsp90α. In conclusion, 1G6-D7 significantly protects against BLM-induced pulmonary fibrosis by ameliorating fibroblast activation and ECM production, which may be through blocking ERK signaling. Our results suggest a safer molecular therapy, 1G6-D7, in pulmonary fibrosis.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fibrose Pulmonar/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Linhagem Celular , Proteínas de Choque Térmico HSP90/imunologia , Humanos , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta1/imunologia
6.
Respir Res ; 18(1): 111, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558721

RESUMO

BACKGROUND: The disruption and hyperpermeability of bronchial epithelial barrier are closely related to the pathogenesis of asthma. House dust mite (HDM), one of the most important allergens, could increase the airway epithelial permeability. Heat shock protein (Hsp) 90α is also implicated in the lung endothelial barrier dysfunction by disrupting RhoA signaling. However, the effect of extracellular Hsp90α (eHsp90α) on the bronchial epithelial barrier disruption induced by HDM has never been reported. METHODS: To investigate the involvement of eHsp90α in the bronchial epithelial barrier disruption induced by HDM, normal human bronchial epithelial cell line 16HBE14o- (16HBE) cells were treated by HDM, human recombinant (hr) Hsp90α and hrHsp90ß respectively and pretreated by1G6-D7, a specific anti-secreted Hsp90α monoclonal antibody (mAb). Hsp90α-silencing cells were also constructed. To further evaluate the role of RhoA signaling in this process, cells were pretreated by inhibitors of Rho kinase, GSK429286A and Y27632 2HCl. Transepithelial electrical resistance (TEER) and FITC-dextran flux (FITC-DX) were examined as the epithelial barrier function. Expression and localization of adherens junctional proteins E-cadherin and ß-catenin were evaluated by western blotting and immunofluorescence respectively. The level of eHsp90α was investigated by concentration and purification of condition media. RhoA activity was determined by using a Rho G-LISA® RhoA activation assay kitTM biochem kit, and the phosphorylation of myosin light chain (MLC), the downstream signal molecule of RhoA, was assessed by western blotting. RESULTS: The epithelial barrier disruption and the loss of adherens junctional proteins E-cadherin and ß-catenin in cytomembrane were observed in HDM-treated 16HBE cells, paralleled with the increase of eHsp90α secretion. All of which were rescued in Hsp90α-silencing cells or by pretreating 16HBE cells with 1G6-D7. Also, 1G6-D7 suppressed RhoA activity and MLC phosphorylation induced by HDM. Furthermore, inhibitors of Rho kinase prevented and restored the airway barrier disruption. Consistently, it was hrHsp90α instead of hrHsp90ß that promoted barrier dysfunction and activated RhoA/MLC signaling in 16HBE cells. CONCLUSIONS: The eHsp90α mediates HDM-induced human bronchial epithelial barrier dysfunction by activating RhoA/MLC signaling, suggesting that eHsp90α is a potential therapeutic target for treatment of asthma.


Assuntos
Antiasmáticos/farmacologia , Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/farmacologia , Cadeias Leves de Miosina/metabolismo , Pyroglyphidae/imunologia , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Antígenos CD , Brônquios/enzimologia , Brônquios/imunologia , Caderinas/metabolismo , Linhagem Celular , Dextranos/metabolismo , Impedância Elétrica , Células Epiteliais/enzimologia , Células Epiteliais/imunologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Permeabilidade , Fosforilação , Interferência de RNA , Fatores de Tempo , Transfecção , beta Catenina/metabolismo , Quinases Associadas a rho/metabolismo
7.
Cell Immunol ; 315: 56-63, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28400057

RESUMO

Recent studies have indicated that Thymic stromal lymphopoietin (TSLP) plays an important role in the prevention and treatment of asthma. However the role of TSLP in dysfunction of airway epithelial adherens junctions E-cadherin in house dust mite (HDM)-induced asthma has not been addressed. We hypothesized that TSLP contributed to HDM-induced E-cadherin dysfunction in asthmatic BALB/c mice and 16HBE cells. In vivo, a HDM-induced asthma mouse model was set up for 8weeks. Mice inhaled an anti-TSLP monoclonal antibody (mAb) before HDM. The mice treated with the anti-TSLP mAb ameliorated airway inflammation, the decreasing and aberrant distribution of E-cadherin and ß-catenin as well as phosphorylation(p)-AKT induced by HDM. In vitro, HDM increased the expression of TSLP and E-cadherin dysfunction by PI3K/Akt signaling pathway. The exposure of 16HBE to TSLP resulted in redistribution of E-cadherin. These results indicate that TSLP may be an important contributor in E-cadherin dysfunction of HDM-induced asthma. TSLP signaling blocking shows a protective effect in mice and that the PI3K/Akt pathway may play a role in this process.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Asma/imunologia , Caderinas/metabolismo , Citocinas/fisiologia , Pyroglyphidae/imunologia , Administração por Inalação , Animais , Anticorpos Monoclonais/administração & dosagem , Asma/terapia , Brônquios/citologia , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/prevenção & controle , Linhagem Celular , Cromonas/farmacologia , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Células Epiteliais , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Morfolinas/farmacologia , Proteína Oncogênica v-akt/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação , Processamento de Proteína Pós-Traducional , Distribuição Aleatória , Transdução de Sinais/imunologia , Organismos Livres de Patógenos Específicos , beta Catenina/análise , Linfopoietina do Estroma do Timo
8.
Sci Rep ; 6: 39559, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27996052

RESUMO

Loss of airway epithelial integrity contributes significantly to asthma pathogenesis. Thymic stromal lymphopoietin (TSLP) may have dual immunoregulatory roles. In inflammatory disorders of the bowel, the long isoform of TSLP (lfTSLP) promotes inflammation while the short isoform (sfTSLP) inhibits inflammation. We hypothesize that lfTSLP contributes to house dust mite (HDM)-induced airway epithelial barrier dysfunction and that synthetic sfTSLP can prevent these effects. In vitro, airway epithelial barrier function was assessed by monitoring transepithelial electrical resistance, fluorescent-dextran permeability, and distribution of E-cadherin and ß-catenin. In vivo, BALB/c mice were exposed to HDM by nasal inhalation for 5 consecutive days per week to establish an asthma model. sfTSLP and 1α,25-Dihydroxyvitamin D3 (1,25D3) were administered 1 h before HDM exposure. After 8 weeks, animal lung function tests and pathological staining were performed to evaluate asthma progression. We found that HDM and lfTSLP impaired barrier function. Treatment with sfTSLP and 1,25D3 prevented HDM-induced airway epithelial barrier disruption. Moreover, sfTSLP and 1,25D3 treatment ameliorated HDM-induced asthma in mice. Our data emphasize the importance of the different expression patterns and biological properties of sfTSLP and lfTSLP. Moreover, our results indicate that sfTSLP and 1,25D3 may serve as novel therapeutic agents for individualized treatment of asthma.


Assuntos
Asma/metabolismo , Citocinas/fisiologia , Dermatophagoides pteronyssinus , Células Epiteliais/metabolismo , Animais , Antígenos CD , Brônquios/citologia , Líquido da Lavagem Broncoalveolar , Caderinas/metabolismo , Proteínas Cdh1/metabolismo , Linhagem Celular , Progressão da Doença , Humanos , Inflamação , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Regulação para Cima , beta Catenina/metabolismo , Linfopoietina do Estroma do Timo
9.
Biochem Biophys Res Commun ; 478(1): 181-186, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27453339

RESUMO

Vascular endothelial growth factor (VEFG) is a major angiogenic factor involved in both normal physiological processes, such as embryonic development and wound healing, and in diseases, like cancer. Recent studies have revealed the functions of VEGF in inflammation and immunoregulation. Asthma is a chronic inflammation of the airways characterized by airway epithelial barrier dysfunction and imbalance in T-helper (Th) 1/Th2 during immunoregulation. We hypothesized that VEGF plays an important role in asthma. Utilizing a house dust mite extract (HDM)-induced murine model of asthma, we investigated whether bevacizumab, a humanized anti-VEGF monoclonal antibody, could protect the epithelial barrier in murine airways. We found that bevacizumab reduced airway hyper-responsiveness (AHR) and airway inflammation induced by HDM. In addition, HDM exposure promoted expression of VEGF, and caused AHR, disruptions of the epithelial barrier, and airway inflammation. Bevacizumab ameliorated AHR and the release of Th2 cytokines, thereby protecting the epithelial barrier. Our data suggest that bevacizumab may be a new therapeutic strategy for asthma.


Assuntos
Asma/tratamento farmacológico , Asma/metabolismo , Bevacizumab/administração & dosagem , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/administração & dosagem , Animais , Asma/induzido quimicamente , Relação Dose-Resposta a Droga , Poeira , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos , Resultado do Tratamento
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 33(8): 1232-5, 2013 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-23996774

RESUMO

OBJECTIVE: To study the signaling pathways associated with lipopolysaccharide (LPS)-induced inflammation in islet micro-endothelial cells (IMECs) and the mechanism of pravastatin intervention. METHODS: IMECs exposed to LPS, SB203580, pravastatin, or SB203580+pravastatin were examined for cell apoptosis with Hoechst staining and flow cytometry and for expression levels of total-p38, photophosphorylation-p38 (p-p38) and iNOS with Western blotting. RESULTS: The apoptosis rate and expression levels of total-p38, p-p38, iNOS in IMECs all increased after LPS exposure. Pravastatin, SB203580, and their combination significantly attenuated LPS-induced enhancement of cell apoptosis and total-p38, p-p38, and iNOS expressions in IMECs. CONCLUSION: LPS-induced inflammatory toxicity in IMECs is associated with the activation of P38MAPK and iNOS/NO signaling pathways. Pravastatin can inhibit these pathways and suppress the apoptosis and necrosis of IMECs to relieve the cell inflammatory injuries.


Assuntos
Células Endoteliais/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pravastatina/farmacologia , Animais , Apoptose , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/citologia , Inflamação , Ilhotas Pancreáticas/irrigação sanguínea , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...