Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37370831

RESUMO

Although immune checkpoint inhibitors improved the clinical outcomes of advanced triple negative breast cancer (TBNC) patients, the response rate remains relatively low. Nigericin is an antibiotic derived from Streptomyces hydrophobicus. We found that nigericin caused cell death in TNBC cell lines MDA-MB-231 and 4T1 by inducing concurrent pyroptosis and apoptosis. As nigericin facilitated cellular potassium efflux, we discovered that it caused mitochondrial dysfunction, leading to mitochondrial ROS production, as well as activation of Caspase-1/GSDMD-mediated pyroptosis and Caspase-3-mediated apoptosis in TNBC cells. Notably, nigericin-induced pyroptosis could amplify the anti-tumor immune response by enhancing the infiltration and anti-tumor effect of CD4+ and CD8+ T cells. Moreover, nigericin showed a synergistic therapeutic effect when combined with anti-PD-1 antibody in TNBC treatment. Our study reveals that nigericin may be a promising anti-tumor agent, especially in combination with immune checkpoint inhibitors for advanced TNBC treatment.

2.
EMBO J ; 42(16): e112414, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37382239

RESUMO

The E3 ligase MDM2 promotes tumor growth and progression by inducing ubiquitin-mediated degradation of P53 and other tumor-suppressing proteins. Here, we identified an MDM2-interacting lncRNA NRON, which promotes tumor formation by suppressing both P53-dependent and independent pathways. NRON binds to MDM2 and MDMX (MDM4) via two different stem-loops, respectively, and induces their heterogenous dimerization, thereby enhancing the E3 ligase activity of MDM2 toward its tumor-suppressing substrates, including P53, RB1, and NFAT1. NRON knockdown dramatically inhibits tumor cell growth in vitro and in vivo. More importantly, NRON overexpression promotes oncogenic transformation by inducing anchorage-independent growth in vitro and facilitating tumor formation in immunocompromised mice. Clinically, NRON expression is significantly associated with poor clinical outcome in breast cancer patients. Together, our data uncover a pivotal role of lncRNA that induces malignant transformation of epithelial cells by inhibiting multiple tumor suppressor proteins.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , RNA Longo não Codificante , Animais , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
Nat Commun ; 13(1): 7160, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418319

RESUMO

Aromatase inhibition is an efficient endocrine therapy to block ectopic estrogen production for postmenopausal estrogen receptor (ER)-positive breast cancer patients, but many develop resistance. Here, we show that aromatase inhibitor (AI)-resistant breast tumors display features of enhanced aerobic glycolysis with upregulation of long noncoding RNA (lncRNA) DIO3OS, which correlates with poor prognosis of breast cancer patients on AI therapies. Long-term estrogen deprivation induces DIO3OS expression in ER-positive breast tumor cells, which further enhances aerobic glycolysis and promotes estrogen-independent cell proliferation in vitro and in vivo. Mechanistically, DIO3OS interacts with polypyrimidine tract binding protein 1 (PTBP1) and stabilizes the mRNA of lactate dehydrogenase A (LDHA) by protecting the integrity of its 3'UTR, and subsequently upregulates LDHA expression and activates glycolytic metabolism in AI-resistant breast cancer cells. Our findings highlight the role of lncRNA in regulating the key enzyme of glycolytic metabolism in response to endocrine therapies and the potential of targeting DIO3OS to reverse AI resistance in ER-positive breast cancer.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Glicólise/genética , Estrogênios/farmacologia , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo
4.
Cancer Sci ; 113(9): 3055-3070, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35657686

RESUMO

5-Fluorouracil (5-FU) is widely used in gastric cancer treatment, yet 5-FU resistance remains an important clinical challenge. We established a model based on five long noncoding RNAs (lncRNA) to effectively assess the prognosis of gastric cancer patients; among them, lncRNA OVAAL was markedly upregulated in gastric cancer and associated with poor prognosis and 5-FU resistance. In vitro and in vivo assays confirmed that OVAAL promoted proliferation and 5-FU resistance of gastric cancer cells. Mechanistically, OVAAL bound with pyruvate carboxylase (PC) and stabilized PC from HSC70/CHIP-mediated ubiquitination and degradation. OVAAL knockdown reduced intracellular levels of oxaloacetate and aspartate, and the subsequent pyrimidine synthesis, which could be rescued by PC overexpression. Moreover, OVAAL knockdown increased sensitivity to 5-FU treatment, which could be reversed by PC overexpression or repletion of oxaloacetate, aspartate, or uridine. OVAAL overexpression enhanced pyrimidine synthesis to promote proliferation and 5-FU resistance of gastric cancer cells, which could be abolished by PC knockdown. Thus, OVAAL promoted gastric cancer cell proliferation and induced 5-FU resistance by enhancing pyrimidine biosynthesis to antagonize 5-FU induced thymidylate synthase dysfunction. Targeting OVAAL-mediated nucleotide metabolic reprograming would be a promising strategy to overcome chemoresistance in gastric cancer.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Ácido Aspártico/farmacologia , Ácido Aspártico/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Nucleotídeos/farmacologia , Nucleotídeos/uso terapêutico , Oxaloacetatos/farmacologia , Oxaloacetatos/uso terapêutico , Piruvato Carboxilase/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
5.
Cell Insight ; 1(1): 100004, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37192988

RESUMO

Recent findings have revealed that human genome encodes tens of thousands long noncoding RNAs (lncRNAs), which play essential roles in broad spectrum of cellular processes. Emerging evidence has uncovered a new archetype of lncRNAs which functions as key components of cell signaling pathways. In this review, we describe how lncRNAs interact with proteins to regulate cancer intracellular signaling and intercellular signaling in the tumor microenvironment (TME), which enable cancer cells to acquire malignant hallmarks. Moreover, besides lncRNAs, non-coding nucleic acids, such as neutrophil extracellular trap-DNA (NET-DNA), endogenous DNA and RNA, can act as signal molecules to connect cells from distant organs and trigger systemic responses in the macroenvironment of tumor-bearing hosts. Overall, the widely observed dysregulation of non-coding nucleic acids in cancer alters signaling networks in the tumor ecosystem, providing a rich resource for the identification of cancer biomarkers and therapeutic targets.

6.
Semin Cancer Biol ; 75: 116-126, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33421618

RESUMO

Non-coding RNAs (ncRNAs) are functional RNAs with limited or no protein-coding ability. These interact with their target molecules and participate in the precise regulation of disease development. Metabolic reprogramming is a hallmark in cancer, and is considered essential in meeting increased macromolecular biosynthesis and energy generation of tumors. Recent studies have revealed the involvement of ncRNAs in several metabolic regulations of cancer through direct modulation of metabolic enzyme activities or participation of metabolism-related signaling pathways. Elucidation of how ncRNAs regulate metabolic reprogramming of cancers has opened up a novel intention to understand the mechanism of metabolic rewiring and also the opportunities of utilizing ncRNA-based therapeutics for targeting the metabolism in cancer treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes e Vias Metabólicas , Neoplasias/patologia , RNA Longo não Codificante/genética , Animais , Biomarcadores Tumorais/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais
7.
Hortic Res ; 7: 136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922808

RESUMO

Refrigeration is commonly used to extend the storage life of "Nanguo" pears, but fruit in long-term refrigeration is prone to peel browning, which is related to membrane lipid degradation. To determine the mechanism of membrane lipid degradation, we identified two R2R3-MYB transcription factors (TFs), PuMYB21 and PuMYB54, from "Nanguo" pears, which were notably expressed in response to cold stress and during the peel-browning process. The results from yeast one-hybrid, electrophoretic mobility shift, and transient expression assays indicated that both PuMYB21 and PuMYB54 directly bind to the promoter of PuPLDß1 (a key enzyme catalyzing the hydrolysis of membrane phospholipids) and activate its expression, which probably enhances the degradation of membrane phospholipids and eventually results in peel browning. Moreover, the overexpression of PuMYB21 and PuMYB54 can greatly activate the transcription of endogenous PuPLDß1 in both "Nanguo" pear fruits and calli, and their silencing can inhibit its transcription. Furthermore, yeast two-hybrid, bimolecular fluorescence complementation, and pull-down assays verified that PuMYB21 interacts with PuMYB54 to enhance the expression of PuPLDß1. In summary, we demonstrate that PuMYB21 and PuMYB54 may have roles in membrane lipid metabolism by directly binding to the downstream structural gene PuPLDß1 during the low temperature-induced peel browning of "Nanguo" pears.

8.
Cancer Res ; 80(14): 3033-3045, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32193285

RESUMO

PARP inhibitor monotherapies are effective to treat patients with breast, ovary, prostate, and pancreatic cancer with BRCA1 mutations, but not to the much more frequent BRCA wild-type cancers. Searching for strategies that would extend the use of PARP inhibitors to BRCA1-proficient tumors, we found that the stability of BRCA1 protein following ionizing radiation (IR) is maintained by postphosphorylational prolyl-isomerization adjacent to Ser1191 of BRCA1, catalyzed by prolyl-isomerase Pin1. Extinction of Pin1 decreased homologous recombination (HR) to the level of BRCA1-deficient cells. Pin1 stabilizes BRCA1 by preventing ubiquitination of Lys1037 of BRCA1. Loss of Pin1, or introduction of a BRCA1-mutant refractory to Pin1 binding, decreased the ability of BRCA1 to localize to repair foci and augmented IR-induced DNA damage. In vitro growth of HR-proficient breast, prostate, and pancreatic cancer cells were modestly repressed by olaparib or Pin1 inhibition using all-trans retinoic acid (ATRA), while combination treatment resulted in near-complete block of cell proliferation. In MDA-MB-231 xenografts and triple-negative breast cancer patient-derived xenografts, either loss of Pin1 or ATRA treatment reduced BRCA1 expression and sensitized breast tumors to olaparib. Together, our study reveals that Pin1 inhibition, with clinical widely used ATRA, acts as an effective HR disrupter that sensitizes BRCA1-proficient tumors to PARP inhibition. SIGNIFICANCE: PARP inhibitors have been limited to treat homologous recombination-deficient tumors. All-trans retinoic acid, by inhibiting Pin1 and destabilizing BRCA1, extends benefit of PARP inhibitors to patients with homologous recombination-proficient tumors.See related commentary by Cai, p. 2977.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias de Mama Triplo Negativas , Proteína BRCA1/genética , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
9.
Nat Commun ; 11(1): 1456, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193458

RESUMO

Resistance development to one chemotherapeutic reagent leads frequently to acquired tolerance to other compounds, limiting the therapeutic options for cancer treatment. Herein, we find that overexpression of Rac1 is associated with multi-drug resistance to the neoadjuvant chemotherapy (NAC). Mechanistically, Rac1 activates aldolase A and ERK signaling which up-regulates glycolysis and especially the non-oxidative pentose phosphate pathway (PPP). This leads to increased nucleotides metabolism which protects breast cancer cells from chemotherapeutic-induced DNA damage. To translate this finding, we develop endosomal pH-responsive nanoparticles (NPs) which deliver Rac1-targeting siRNA together with cisplatin and effectively reverses NAC-chemoresistance in PDXs from NAC-resistant breast cancer patients. Altogether, our findings demonstrate that targeting Rac1 is a potential strategy to overcome acquired chemoresistance in breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos , Via de Pentose Fosfato , Neoplasias de Mama Triplo Negativas/terapia , Proteínas rac1 de Ligação ao GTP/metabolismo , Adulto , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biópsia com Agulha de Grande Calibre , Mama/patologia , Mama/cirurgia , Linhagem Celular Tumoral , Quimioterapia Adjuvante/métodos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Conjuntos de Dados como Assunto , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos , Feminino , Seguimentos , Frutose-Bifosfato Aldolase/metabolismo , Técnicas de Silenciamento de Genes , Glicólise , Humanos , Sistema de Sinalização das MAP Quinases , Mastectomia , Camundongos , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Nucleotídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Natl Cancer Inst ; 112(4): 356-368, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31286138

RESUMO

BACKGROUND: Tumor growth can be addicted to vital oncogenes, but whether long noncoding RNAs (lncRNAs) are essential to cancer survival is largely uncharacterized. METHODS: We retrieved Gene Expression Omnibus datasets to identify lncRNA overexpression in 257 cancers vs 196 normal tissues and analyzed the association of ST8SIA6-AS1 (termed Aurora A/Polo-like-kinase 1 [PLK1]-associated lncRNA, APAL) with the clinical outcomes of multiple types of cancer from public RNA sequencing and microarray datasets as well as from in-house cancer cohorts. Loss- and gain-of-function experiments were performed to explore the role of APAL in cancers in vitro and in vivo. RNA pulldown and RNA immunoprecipitation were used to investigate APAL-interacting proteins. All statistical tests were two-sided. RESULTS: APAL is overexpressed in multiple human cancers associated with poor clinical outcome of patients. APAL knockdown causes mitotic catastrophe and massive apoptosis in human breast, lung, and pancreatic cancer cells. Overexpressing APAL accelerates cancer cell cycle progression, promotes proliferation, and inhibits chemotherapy-induced apoptosis. Mechanism studies show that APAL links up PLK1 and Aurora A to enhance Aurora A-mediated PLK1 phosphorylation. Notably, targeting APAL inhibits the growth of breast and lung cancer xenografts in vivo (MCF-7 xenografts: mean tumor weight, control = 0.18 g [SD = 0.03] vs APAL locked nucleic acids = 0.07 g [SD = 0.02], P < .001, n = 8 mice per group; A549 xenografts: mean tumor weight control = 0.36 g [SD = 0.10] vs APAL locked nucleic acids = 0.10 g [SD = 0.04], P < .001, n = 9 mice per group) and the survival of patient-derived breast cancer organoids in three-dimensional cultures. CONCLUSIONS: Our data highlight the essential role of lncRNA in cancer cell survival and the potential of APAL as an attractive therapeutic target for a broad-spectrum of cancers.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Longo não Codificante/metabolismo , Sialiltransferases/genética , Células A549 , Animais , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/genética , Xenoenxertos , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Mitose/fisiologia , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , Quinase 1 Polo-Like
11.
Front Cell Dev Biol ; 7: 322, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31867329

RESUMO

Breast cancer is the most prevalent tumor in women worldwide and about 70% patients are estrogen receptor positive. In these cancer patients, resistance to the anticancer estrogen receptor antagonist tamoxifen emerges to be a major clinical obstacle. Peptidyl-prolyl isomerase Pin1 is prominently overexpressed in breast cancer and involves in tamoxifen-resistance. Here, we explore the mechanism and effect of targeting Pin1 using its chemical inhibitor all-trans retinoic acid (ATRA) in the treatment of tamoxifen-resistant breast cancer. We found that Pin1 was up-regulated in tamoxifen-resistant human breast cancer cell lines and tumor tissues from relapsed patients. Pin1 overexpression increased the phosphorylation of ERα on S118 and stabilized ERα protein. ATRA treatment, resembling the effect of Pin1 knockdown, promoted ERα degradation in tamoxifen-resistant cells. Moreover, ATRA or Pin1 knockdown decreased the activation of ERK1/2 and AKT pathways. ATRA also reduced the nuclear expression and transcriptional activity of ERα. Importantly, ATRA inhibited cell viability and proliferation of tamoxifen-resistant human breast cancer cells in vitro. Slow-releasing ATRA tablets reduced the growth of tamoxifen-resistant human breast cancer xenografts in vivo. In conclusion, ATRA-induced Pin1 ablation inhibits tamoxifen-resistant breast cancer growth by suppressing multifactorial mechanisms of tamoxifen resistance simultaneously, which demonstrates an attractive strategy for treating aggressive and endocrine-resistant tumors.

12.
Ann Transl Med ; 7(18): 470, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31700906

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a common epithelial carcinoma with high occurrence and metastatic rates in Southern China. To date, the molecular mechanisms of metastasis for NPC remains unclear. The aim of this study was to discover the underlying mechanism of NPC and to elucidate novel genes that may play important roles in NPC progression and metastasis. METHODS: We carry out mRNA expression profiling, Arraystar Human mRNA Expression Profiling Service Report based on polymerase chain reaction (PCR) using four pairs of tumor tissues and their corresponding benign adjacent tissues from NPC patients. RESULTS: We found that 1,787 genes were differentially expressed, among them, 8 genes were identified as highly upregulated in NPC patients. Within these 8 genes, only TSPAN8 was consistently over-expressed in poorly differentiated CNE2 cell line and highly-metastatic subclone S18 cell line. TSPAN8 mRNA and protein levels were increased in primary carcinoma tissues compared to their corresponding adjacent benign tissues. Knockdown of TSPAN8 by siRNA resulted in inhibition of NPC cell migration and invasion, while overexpression of TSPAN8 promoted NPC cell migration, invasion and proliferation. To explore the potential metastasis pathway mechanism for NPC, TSPAN8 were silenced in CNE2 cell. From the Tumor Metastasis Pathway Finder PCR array, knockdown of TSPAN8 led to the down-regulation of IL-1ß, which showed the most down-regulation among identified genes. IL-1ß is a regulating factor of the Akt/MAPK pathway, which is involved in the cancer cell migration regulation. Furthermore, the down-regulation of TSPAN8 in CNE2 cell was associated with inhibition of the Akt/MAPK pathway. Immunohistochemistry (IHC) indicated that TSPAN8 level was increased in NPC tumors, which was associated with shorter overall survival and metastasis free survival (MFS). CONCLUSIONS: The data indicated that TSPAN8 acting as a tumor migration marker and may be a prognostic factor or therapeutic target for NPC.

13.
Clin Cancer Res ; 25(13): 3873-3886, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30890553

RESUMO

PURPOSE: Malignant phyllodes tumor (PT) is a fast-progression neoplasm derived from periductal stromal cells of the breast, which currently still lack effective treatment strategies. Our previous studies showed that the high density of tumor-associated macrophages (TAM) plays an important role in the malignant progression of PTs. TAMs secreted large amount of CCL18 to promote myofibroblast differentiation and invasion via binding to its receptor PIPTNM3 on myofibroblasts. Herein, we investigate the mechanism of how TAMs are recruited and repolarized by PTs to drive the malignant progression. EXPERIMENTAL DESIGN: The cytokines secreted by PTs were identified by the cytokine array. The clinical and pathologic correlations of the cytokine with PTs were estimated with IHC. The mechanisms of the cytokine that recruited and polarized the macrophage were explored with a coculture model of primary PT cells and macrophages in vitro and in vivo. The patient-derived xenografts (PDX) of malignant PTs were used to evaluate the therapeutic effect of CCR5 inhibitor. RESULTS: A high level of malignant PT-secreted CCL5 correlated with poor outcome of PTs and could be an independent prognostic factor of PTs. CCL5 bound to its receptor, CCR5, on macrophages thus activated AKT signaling to recruit and repolarize TAMs. Subsequently, the TAMs released CCL18 to further promote the aggressive phenotype of malignant PTs by enhancing and maintaining the myofibroblast differentiation and invasion in vitro and in vivo. In a murine PDX model of human malignant PTs, the CCL5-CCR5 axis blocked by maraviroc, an FDA-proved CCR5 inhibitor, prevented recruitment of monocytes to the tumor and dramatically suppressed tumor growth. CONCLUSIONS: Our findings indicate that malignant PTs recruit and repolarize TAMs through a CCL5-CCR5-driven signaling cascade. Thus, a positive feedback loop of CCL5-CCR5 and CCL18-PIPTNM3 between myofibroblast and TAMs is constituted to drive the malignant progression of PTs. Furthermore, targeting CCR5 with maraviroc represents a potential clinically available strategy to treat malignant PTs.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Quimiocina CCL5/biossíntese , Macrófagos/metabolismo , Tumor Filoide/metabolismo , Tumor Filoide/patologia , Microambiente Tumoral , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Quimiocina CCL5/antagonistas & inibidores , Quimiocina CCL5/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Macrófagos/patologia , Camundongos , Terapia de Alvo Molecular , Gradação de Tumores , Estadiamento de Neoplasias , Tumor Filoide/tratamento farmacológico , Tumor Filoide/mortalidade , Prognóstico , Proteínas Proto-Oncogênicas c-akt , Receptores CCR5/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Sci Transl Med ; 10(462)2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305452

RESUMO

Transforming growth factor-ß (TGF-ß) is a well-established central mediator of renal fibrosis, a common outcome of almost all progressive chronic kidney diseases. Here, we identified a poorly conserved and kidney-enriched long noncoding RNA in TGF-ß1-stimulated human tubular epithelial cells and fibrotic kidneys, which we termed TGF-ß/Smad3-interacting long noncoding RNA (lnc-TSI). Lnc-TSI was transcriptionally regulated by Smad3 and specifically inhibited TGF-ß-induced Smad3 phosphorylation and downstream profibrotic gene expression. Lnc-TSI acted by binding with the MH2 domain of Smad3, blocking the interaction of Smad3 with TGF-ß receptor I independent of Smad7. Delivery of human lnc-TSI into unilateral ureteral obstruction (UUO) mice, a well-established model of renal fibrosis, inhibited phosphorylation of Smad3 in the kidney and attenuated renal fibrosis. In a cohort of 58 patients with biopsy-confirmed IgA nephropathy (IgAN), lnc-TSI renal expression negatively correlated with the renal fibrosis index (r = -0.56, P < 0.001) after adjusting for cofounders. In a longitudinal study, 32 IgAN patients with low expression of renal lnc-TSI at initial biopsy had more pronounced increases in their renal fibrosis index and experienced stronger declines in renal function at repeat biopsy at a mean of 48 months of follow-up. These data suggest that lnc-TSI reduced renal fibrogenesis through negative regulation of the TGF-ß/Smad pathway.


Assuntos
Rim/patologia , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Células Epiteliais/metabolismo , Fibrose , Humanos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Domínios Proteicos , RNA Longo não Codificante/genética , Proteína Smad3/química , Regulação para Cima , Obstrução Ureteral/patologia
15.
Cancer Lett ; 422: 118-128, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29476791

RESUMO

Esophageal squamous cell carcinomas (ESCCs) have a poor prognosis mostly due to early metastasis. To explore the early event of metastasis in ESCC, we established an in vitro selection model to mimic the interaction of tumor cells with extracellular matrix, through which a sub-line of ESCC cells with high invasive ability was generated. By comparing the gene expression profile of the highly invasive sub-line to that of the parental cells, ADAM12-L was identified as a candidate gene promoting ESCC cell invasion. Immunohistochemistry revealed that the ADAM12-L was overexpressed in human ESCC tissues, especially at cancer invasive edge, and ADAM12-L overexpression tightly correlated with increased metastasis and poor outcome of ESCC patients. Indeed, ADAM12-L knockdown reduced the invasion and metastasis of ESCC cells both in vitro and in vivo. Furthermore, we demonstrated that ADAM12-L participated in focal adhesion turnover and promoted the activation of focal adhesion kinase (FAK), which in turn increased ADAM12-L transcription through FAK/JNK/c-Jun axis. Therefore, a loop initiated from the cancer cell upon the engagement with extracellular matrix through FAK and c-Jun to enhance ADAM12-L expression is established, leading to the positive feedback of further FAK activation and prompting metastasis. Our study indicates that overexpression of ADAM12-L can serve as a precision marker to determine the activation of this loop. Targeting ADAM12-L to disrupt this positive feedback loop represents a promising strategy to treat the metastasis of esophageal cancers.


Assuntos
Proteína ADAM12/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Matriz Extracelular/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Proteína ADAM12/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Retroalimentação Fisiológica , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Fosforilação , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais , Regulação para Cima
16.
Adv Exp Med Biol ; 1026: 147-169, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29282683

RESUMO

The genomic landscape of breast cancer has been delineated in recent years. Advances in molecular characterization and targeting strategies are making it feasible to integrate clinical, genome-based and phenotype-based diagnostic and therapeutic methods and apply them to individual patient in the era of precision medicine. Cancer stem cells (CSCs) are a subpopulation in the tumor which have the capability of self-renewal and differentiation. Breast CSCs have important clinical implications as they account for tumor initiation, maintenance, metastasis, therapy resistance, and relapse. In this chapter, we will introduce approaches used to characterize breast CSCs, crucial pathways involved in regulating cancer stemness, and implications of breast CSCs in the precision diagnosis and treatment of breast cancer. We will also discuss novel compounds and therapeutic strategies that selectively target breast CSCs. Integration of breast CSC-related molecular diagnosis and targeted therapy into the clinical workflow of precision medicine has the potential to deliver more effective treatment to breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Células-Tronco Neoplásicas/efeitos dos fármacos , Medicina de Precisão , Neoplasias da Mama/patologia , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Feminino , Humanos , Terapia de Alvo Molecular , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia
17.
Discov Med ; 24(131): 75-85, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28972876

RESUMO

Chemotherapy is a cornerstone treatment for early and advanced stage breast cancer patients. However, resistance to chemotherapy remains a major obstacle, resulting in disease relapse and progression. Emerging studies demonstrated that miRNAs regulate chemotherapy-induced epithelial-mesenchymal transition (EMT) and drug resistance, but the underlying mechanisms remain unclear. Here we established a doxorubicin-resistant breast cancer cell line MCF-7/Adr, and found these cells exhibited an EMT phenotype featured by a fibroblast-like morphology, increased the capacity of migration and invasion, and underwent the changes of molecular markers of EMT including E-cadherin, N-cadherin, and vimentin. We then compared the miRNA expression profiles between MCF-7/Adr and parental MCF-7 by miRNA microarray, and identified miR-200b as the most dramatically down-regulated miRNA. Overexpression of miR-200b in chemo-resistant cells reversed the EMT phenotype and increased sensitivity to doxorubicin. Inhibition of miR-200b in parental cells induced EMT and resistance to doxorubicin. Furthermore, we characterized the target gene of miR-200b, and showed that overexpression of miR-200b down-regulated FN1 expression and the luciferase activity. Compared with the parental cells, FN1 was significantly elevated in MCF-7/Adr cells. Knockdown of FN1 reversed mesenchymal morphology, inhibited cell migration and invasion, and sensitized cells to doxorubicin. Our data suggest that miR-200b regulates EMT of chemo-resistant breast cancer cells by targeting FN1. miR-200b-based therapy may be an effective strategy in treating advanced breast cancer patients.


Assuntos
Neoplasias da Mama , Citocinas , Regulação para Baixo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Proteínas de Neoplasias , RNA Neoplásico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Citocinas/biossíntese , Citocinas/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Fibronectinas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
18.
Adv Exp Med Biol ; 927: 69-107, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27376732

RESUMO

Thousands of long noncoding RNAs (lncRNAs) have been discovered in recent years. The functions of lncRNAs range broadly from regulating chromatin structure and gene expression in the nucleus to controlling messenger RNA (mRNA) processing, mRNA posttranscriptional regulation, cellular signaling, and protein activity in the cytoplasm. Experimental and computational techniques have been developed to characterize lncRNAs in high-throughput scale, to study the lncRNA function in vitro and in vivo, to map lncRNA binding sites on the genome, and to capture lncRNA-protein interactions with the identification of lncRNA-binding partners, binding sites, and interaction determinants. In this chapter, we will discuss these technologies and their applications in decoding the functions of lncRNAs. Understanding these techniques including their advantages and disadvantages and developing them in the future will be essential to elaborate the roles of lncRNAs in cancer and other diseases.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Neoplasias/genética , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Transdução de Sinais/genética
19.
EBioMedicine ; 9: 148-160, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27333046

RESUMO

Whether the human tumor virus, Epstein-Barr Virus (EBV), promotes breast cancer remains controversial and a potential mechanism has remained elusive. Here we show that EBV can infect primary mammary epithelial cells (MECs) that express the receptor CD21. EBV infection leads to the expansion of early MEC progenitor cells with a stem cell phenotype, activates MET signaling and enforces a differentiation block. When MECs were implanted as xenografts, EBV infection cooperated with activated Ras and accelerated the formation of breast cancer. Infection in EBV-related tumors was of a latency type II pattern, similar to nasopharyngeal carcinoma (NPC). A human gene expression signature for MECs infected with EBV, termed EBVness, was associated with high grade, estrogen-receptor-negative status, p53 mutation and poor survival. In 11/33 EBVness-positive tumors, EBV-DNA was detected by fluorescent in situ hybridization for the viral LMP1 and BXLF2 genes. In an analysis of the TCGA breast cancer data EBVness correlated with the presence of the APOBEC mutational signature. We conclude that a contribution of EBV to breast cancer etiology is plausible, through a mechanism in which EBV infection predisposes mammary epithelial cells to malignant transformation, but is no longer required once malignant transformation has occurred.


Assuntos
Transformação Celular Neoplásica , Herpesvirus Humano 4/patogenicidade , Neoplasias/patologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Análise por Conglomerados , DNA Viral/genética , DNA Viral/metabolismo , Intervalo Livre de Doença , Células Epiteliais/citologia , Células Epiteliais/transplante , Células Epiteliais/virologia , Transição Epitelial-Mesenquimal , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/metabolismo , Neoplasias/mortalidade , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Complemento 3d/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Transcriptoma , Transplante Heterólogo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
20.
Nature ; 523(7561): 431-436, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26176913

RESUMO

Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy and Alzheimer's disease, the defining pathologic features of which include tauopathy made of phosphorylated tau protein (P-tau). However, tauopathy has not been detected in the early stages after TBI, and how TBI leads to tauopathy is unknown. Here we find robust cis P-tau pathology after TBI in humans and mice. After TBI in mice and stress in vitro, neurons acutely produce cis P-tau, which disrupts axonal microtubule networks and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, which we term 'cistauosis', appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis P-tau is a major early driver of disease after TBI and leads to tauopathy in chronic traumatic encephalopathy and Alzheimer's disease. The cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Lesões Encefálicas/patologia , Lesões Encefálicas/prevenção & controle , Tauopatias/prevenção & controle , Proteínas tau/antagonistas & inibidores , Proteínas tau/química , Doença de Alzheimer/complicações , Doença de Alzheimer/prevenção & controle , Animais , Anticorpos Monoclonais/uso terapêutico , Afinidade de Anticorpos , Axônios/metabolismo , Axônios/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Epitopos/química , Epitopos/imunologia , Feminino , Humanos , Masculino , Camundongos , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/biossíntese , Fosfoproteínas/imunologia , Fosfoproteínas/toxicidade , Estresse Fisiológico , Tauopatias/complicações , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/biossíntese , Proteínas tau/imunologia , Proteínas tau/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA