Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 642: 439-446, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29101068

RESUMO

Abnormal serum levels of adipokine have been established to be a strong predictor of developing several human diseases including type 2 diabetes mellitus (T2DM). Association studies have reported several genetic variants in genes coding adipokines with contributions to T2DM susceptibility as well as some glycemic and metabolic traits, of which the single nucleotide polymorphisms (SNPs) of RETN, NAMPT, and ADIPOQ gene were well documented. However, little is known about contributions of these SNPs to above phenotypes in Chinese. In the current study, with availably quantitative glycemic and metabolic data from a total of 185 T2DM patients and 191 healthy controls, we tested associations between four SNPs of RETN, NAMPT, ADIPOQ gene and 13 glycemic and metabolic traits. The results showed that the rs1862513 and rs34861192 of RETN gene were functional and negatively correlated with the levels of serum creatinine and cholesterol, respectively. The rs16861194 of ADIPOQ gene was positively correlated with the aspartate aminotransferase (AST) and AST/alanine aminotransferase level. Moreover, the rs34861192 and rs13237989 of NAMPT gene synergistically affected the levels of insulin and glycemic index. However, due to the limited sample size, only the rs16861194 exerted a significant increased risk on T2DM. These results underscore the contributions of SNPs in RETN, NAMPT, ADIPOQ gene to glycemic and metabolic traits as well as T2DM susceptibility in Chinese.


Assuntos
Adiponectina/genética , Povo Asiático/genética , Citocinas/genética , Diabetes Mellitus Tipo 2/genética , Síndrome Metabólica/genética , Nicotinamida Fosforribosiltransferase/genética , Polimorfismo de Nucleotídeo Único , Resistina/genética , Idoso , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , China , Creatinina/sangue , Diabetes Mellitus Tipo 2/sangue , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Glicerol/sangue , Humanos , Insulina/sangue , Masculino , Síndrome Metabólica/sangue , Pessoa de Meia-Idade , Locos de Características Quantitativas
2.
Can J Physiol Pharmacol ; 95(9): 1030-1038, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28511026

RESUMO

We previously suggested that endogenous glucocorticoids (GCs) may inhibit myocardial inflammation induced by lipopolysaccharide (LPS) in vivo. However, the possible cellular and molecular mechanisms were poorly understood. In this study, we investigated the role of physiological concentration of GCs in inflammation induced by LPS in cardiac fibroblasts and explored the possible mechanisms. The results showed that hydrocortisone at the dose of 127 ng/mL (equivalent to endogenous basal level of GCs) inhibited LPS (100 ng/mL)-induced productions of TNF-α and IL-1ß in cardiac fibroblasts. Xanthine oxidase/xanthine (XO/X) system impaired the anti-inflammatory action of GCs through downregulating HDAC2 activity and expression. Knockdown of HDAC2 restrained the anti-inflammatory effects of physiological level of hydrocortisone, and blunted the ability of XO/X system to downregulate the inhibitory action of physiological level of hydrocortisone on cytokines. These results suggested that HDAC2 was required by the physiological concentration of GC to inhibit inflammatory response. The dysfunction of HDAC2 induced by oxidative stress might be account for GC resistance and chronic inflammatory disorders during the cardiac diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Fibroblastos/efeitos dos fármacos , Glucocorticoides/farmacologia , Histona Desacetilase 2/metabolismo , Miocárdio/patologia , Animais , Anti-Inflamatórios/uso terapêutico , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/uso terapêutico , Hidrocortisona/farmacologia , Hidrocortisona/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Xantina/metabolismo , Xantina Oxidase/metabolismo
3.
J Cardiovasc Pharmacol ; 60(1): 33-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22472906

RESUMO

Emerging evidence indicates that myocardial inflammation plays a key role in the pathogenesis of cardiac diseases. But the exact mechanisms for this chronic inflammatory disorder have not been elucidated. Glucocorticoids (GCs) are the most effective anti-inflammatory treatments available for many inflammatory diseases. However, it is unknown whether endogenous GCs are able to exert anti-inflammatory effect on myocardial inflammation. In this study, the potential role of endogenous GCs in the regulation of myocardial inflammation was investigated. We showed that the reduction of endogenous GC level by adrenalectomy promoted the production of basal and lipopolysaccharide (LPS)-induced proinflammatory cytokines, which could be partly reversed by supplementing with exogenous physiological level of hydrocortisone. Inhibition of GC receptor (GR) signaling pathway with GR antagonist mifepristone (RU486) or histone deacetylase inhibitor trichostatin A (TSA) also increased the levels of basal and LPS-induced proinflammatory cytokines. Moreover, blockade of GC-GR signaling pathway by adrenalectomy, RU486 or TSA enhanced LPS-induced myocardial nuclear factor-κB activation and histone acetylation but inhibited myocardial histone deacetylase expression and activity. Cardiac function studies demonstrated that blockade of the GC-GR signaling pathway aggravated inflammation-induced cardiac dysfunction. These findings indicate that endogenous GCs are able to inhibit myocardial inflammation induced by LPS. Endogenous GCs represent an important endogenous anti-inflammatory mechanism for myocardium in rats and such mechanism injury may be an important factor for pathogenesis of cardiac diseases.


Assuntos
Glucocorticoides/metabolismo , Inflamação/fisiopatologia , Miocárdio/patologia , Receptores de Glucocorticoides/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Histona Desacetilases/metabolismo , Hidrocortisona/administração & dosagem , Hidrocortisona/metabolismo , Ácidos Hidroxâmicos/farmacologia , Lipopolissacarídeos/toxicidade , Masculino , Mifepristona/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
4.
Clin Exp Pharmacol Physiol ; 38(11): 739-46, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21819443

RESUMO

1. Inflammation-induced proliferation of cardiac fibroblasts plays an important role in cardiac remodelling. Pharmacological doses of exogenous glucocorticoids (GC) are the most effective therapy for inflammatory diseases. Similarly, physiological concentrations of endogenous GC have recently been shown to have anti-inflammatory effects. Therefore, the aim of the present study was to determine whether a physiological concentration of GC could inhibit pro-inflammatory cytokine-stimulated proliferation of cardiac fibroblasts and to explore the mechanisms involved. 2. Cardiac fibroblasts were isolated from adult male Sprague-Dawley rats and cell proliferation was measured using a CCK-8 kit. Western blotting was used to detect protein expression of extracellular-regulated kinase (ERK) 1/2 and nuclear factor (NF)-κB. 3. Cardiac fibroblast proliferation was significantly increased by tumour necrosis factor-α, interleukin (IL)-1ß and angiotensin II and was accompanied by upregulated protein expression of ERK1/2 and NF-κB. A physiological concentration of hydrocortisone (127 ng/mL) not only inhibited the proliferation of cardiac fibroblasts, but also suppressed activation of ERK1/2 and NF-κB. These effects of hydrocortisone were abrogated by the glucocorticoid receptor (GR) antagonist RU-486 (100 nmol/L). Furthermore, inflammation-induced cardiac fibroblast proliferation was also blocked by the mitogen-activated protein kinase kinase 1/2 inhibitor U0126 (100 nmol/L) and the NF-κB inhibitor pyrrolidine dithiocarbamate (1 µmol/L). Cytokine-induced ERK1/2 phosphorylation and cyclin D1 expression were attenuated by U0126, suggesting that the ERK1/2 and NF-κB signalling pathways were involved in cardiac fibroblast proliferation. 4. In conclusion, the results of the present study indicate that a physiological concentration of hydrocortisone can inhibit inflammation-induced proliferation of cardiac fibroblasts by preventing the activation of ERK1/2 and NF-κB.


Assuntos
Hidrocortisona/farmacologia , Mediadores da Inflamação/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miofibroblastos/metabolismo , NF-kappa B/metabolismo , Angiotensina II/metabolismo , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Hidrocortisona/fisiologia , Inflamação/genética , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Miocárdio/citologia , Miocárdio/metabolismo , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , NF-kappa B/genética , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/genética
5.
Clin Exp Pharmacol Physiol ; 37(11): 1087-95, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20738325

RESUMO

1. Our previous study has shown that leptin induces cardiomyocyte hypertrophy; however, the mechanisms are poorly understood. Recent studies have shown that peroxisome proliferator-activated receptor α (PPARα) activation might be responsible for pathological remodeling and severe cardiomyopathy. Leptin, as an endogenous activator of PPARα, regulates energy metabolism through activating PPARα in many cells. Therefore, we hypothesized that leptin induces cardiomyocyte hypertrophy through activating the cardiac PPARα pathway. 2. Cultured neonatal rat cardiomyocytes were used to evaluate the effects of PPARα on hypertrophy. The selective PPARα antagonist GW6471 concentration-dependently decreased atrial natriuretic factor mRNA expression by 23%, 36%, 44% and 59%, and significantly decreased total RNA levels, protein synthesis and cell surface areas, all of which were elevated by 72h of leptin treatment. The augmentation of reactive oxygen species levels in leptin treated cardiomyocytes was reversed by 0.1-10µmol/L GW6471 (40%, 52% and 58%). After 24h of treatment, leptin concentration-dependently enhanced mRNA expression by 7%, 93%, 100% and 256%, and protein expression by 31.2%, 64.2%, 143% and 199%, and the activity of PPARα. Meanwhile, cardiomycytes receiving 72h of treatment with the PPARα agonist, fenofibrate, concentration-dependently increased total RNA levels, atrial natriuretic factor mRNA expression, protein synthesis and cell surface area. Treatment of fenofibrate for 4 h also elevated oxygen species levels in a concentration-dependent manner. 3. In conclusion, these findings show that leptin induces hypertrophy through the activation of the PPARα pathway in cultured neonatal rat cardiomyocytes.


Assuntos
Crescimento Celular/efeitos dos fármacos , Leptina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , PPAR alfa/biossíntese , Animais , Animais Recém-Nascidos , Western Blotting , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Leptina/metabolismo , Miócitos Cardíacos/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Oxazóis/farmacologia , PPAR alfa/antagonistas & inibidores , Ligação Proteica , Ratos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tirosina/análogos & derivados , Tirosina/farmacologia
6.
Biol Pharm Bull ; 33(3): 427-31, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20190404

RESUMO

The present study was performed to evaluate the antihypertensive effects of honokiol in vivo in spontaneously hypertensive rats (SHR). The effects of honokiol were investigated by determination of the blood pressure, vascular reactivity, oxidative parameters, and histologic change in the aorta. Long-term administration of honokiol (400 mg/kg/d) to SHR decreased systolic blood pressure significantly. Honokiol (200, 400 mg/kg/d) enhanced the aortic relaxation in response to acetylcholine after 49-d treatment, but had no significant effects on the relaxation to sodium nitroprusside. The oral administration of honokiol significantly increased the plasma level of NO(2(-))/NO(3(-)), but decreased the level of malondialdehyde in liver of SHR compared with the control vehicle. In addition, SHR administered honokiol showed significant reductions in the elastin bands and media thickness in the aorta. These results suggest that chronic treatment with honokiol exerts an antihypertensive effect in SHR, and its vasorelaxant action and antioxidant properties may contribute to reducing the elevated blood pressure.


Assuntos
Anti-Hipertensivos/uso terapêutico , Antioxidantes/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Hipertensão/tratamento farmacológico , Lignanas/uso terapêutico , Magnolia/química , Extratos Vegetais/uso terapêutico , Vasodilatadores/uso terapêutico , Acetilcolina/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Aorta/patologia , Compostos de Bifenilo/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Elastina/metabolismo , Lignanas/farmacologia , Fígado/metabolismo , Malondialdeído/metabolismo , Nitratos/sangue , Nitritos/sangue , Nitroprussiato/farmacologia , Extratos Vegetais/farmacologia , Ratos , Ratos Endogâmicos SHR , Vasodilatadores/farmacologia
7.
Zhong Yao Cai ; 26(6): 417-20, 2003 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-14528682

RESUMO

OBJECTIVE: To observe the effect of Fuyuan oral liquid (FYOL) on mice and rats intestinal function. METHOD: The effect of FYOL on the carbo-dust drive distance in mice whose intestinal function is normal or weakened by atropine was determined. The effect of FYOL on rats intestional movement curves and mesenteric microcirculation was determined. The effect of FYOL on the inflammatory exudation due to aceti acid in mice was determined. RESULT: FYOL increased mice intestinal drive distance regardless of function normal or weakened by atropine. FYOL increased rats intestional peristalsis intensity but not fequency and ameliorates mesenteric microcirculation. FYOL inhibited mice inflammatory exudation by acetic acid. CONCLUSION: FYOL can accelerate intestinal peristalsis and ameliorate mesenteric microcirculation and anti-inflammation.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Intestino Delgado/fisiologia , Plantas Medicinais , Animais , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/isolamento & purificação , Feminino , Masculino , Mesentério/irrigação sanguínea , Camundongos , Microcirculação/efeitos dos fármacos , Peristaltismo/efeitos dos fármacos , Plantas Medicinais/química , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...