Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Animals (Basel) ; 13(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37238096

RESUMO

Mycoplasma gallisepticum (MG) is a major cause of chronic respiratory diseases in chickens, with both horizontal and vertical transmission modes and varying degrees of impact on different ages. The innate immune response is crucial in resisting MG infection. Therefore, this study aimed to investigate the innate immune response of chicken embryos and newly hatched chicks to MG infection using comparative RNA-seq analysis. We found that MG infection caused weight loss and immune damage in both chicken embryos and chicks. Transcriptome sequencing analysis revealed that infected chicken embryos had a stronger immune response than chicks, as evidenced by the higher number of differentially expressed genes associated with innate immunity and inflammation. Toll-like receptor and cytokine-mediated pathways were the primary immune response pathways in both embryos and chicks. Furthermore, TLR7 signaling may play an essential role in the innate immune response to MG infection. Overall, this study sheds light on the development of innate immunity to MG infection in chickens and can help in devising disease control strategies.

3.
Int Immunopharmacol ; 113(Pt A): 109419, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461587

RESUMO

Mycoplasma gallisepticum (MG) is a pathogenic microorganism that causes chronic respiratory disease (CRD). MG infection has a serious negative impact on the poultry industry. Andrographolide (AG) is known to regulate immune responses, antimicrobial infections, and anti-inflammatory responses. However, the underlying molecular mechanisms of AG action in MG-infected chickens remain unclear. Hence, we constructed models of MG infection by using chickens and chicken macrophage-like (HD11) cells in vivo and in vitro, respectively. The results showed that AG significantly inhibited the mRNA and protein expression of the toxic adhesion protein pMGA1.2 in vivo and in vitro. Meanwhile, AG treatment significantly decreased the mRNA expression of pro-inflammatory such as interleukin-6 (IL-6) and interleukin- 1ß (IL-1ß), and increased the mRNA expression of an anti-inflammatory such as interleukin-10 (IL-10) and transforming growth factor beta (TGF-ß) in vivo and in vitro. Furthermore, AG treatment down-regulated inflammasome NLRP3 and apoptosis genes caspase3 and caspase9, and up-regulated autophagy protein light chain 3 (LC3) by regulating the PI3K/Akt signaling pathway in vitro. Our results suggest that AG can reduce the expression of NLRP3 and alleviate the inflammatory response from MG infection by inducing autophagy, probably by modulating PI3K/Akt signaling pathway. This study demonstrates that AG can be used as a specific target to prevent and treat MG infection effectively.


Assuntos
Mycoplasma gallisepticum , Infecções Respiratórias , Animais , Galinhas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteína 3 que Contém Domínio de Pirina da Família NLR
4.
Cells ; 11(18)2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139393

RESUMO

High-mobility group box 1 (HMGB1), a member of damage-associated molecular patterns (DAMPs), is involved in the immune regulation of several infectious diseases. Mycoplasma gallisepticum (MG) infection is proved to cause an abnormal immune response, but the role of HMGB1 in MG-induced chronic respiratory disease (CRD) is unclear. In this study, we found that HMGB1 was released from the nucleus to the extracellular in macrophages upon infection with MG. Extracellular HMGB1 bound to TLR2 activating the NF-κB pathway triggering a severe inflammatory storm and promoting the progression of MG infection. More importantly, TLR4 could be activated by HMGB1 to trigger immune disorders after TLR2 was silenced. This disease process could be interrupted by ethyl pyruvate (EP) inhibition of HMGB1 release or glycyrrhizic acid (GA). Furthermore, treatment of MG-infected chickens with GA significantly alleviated immune organ damage. In conclusion, we demonstrate that HMGB1 is secreted extracellularly to form an inflammatory environment upon MG infection, triggering a further cellular inflammatory storm in a positive feedback approach. Blocking MG-induced HMGB1 release or suppression downstream of the HMGB1-TLR2/TLR4 axis may be a promising novel strategy for the treatment of CRD. Furthermore, this study may provide a theoretical reference for understanding non-LPS-activated TLR4 events.


Assuntos
Proteína HMGB1 , Mycoplasma gallisepticum , Animais , Galinhas/metabolismo , Ácido Glicirrízico/farmacologia , Proteína HMGB1/metabolismo , Mediadores da Inflamação , NF-kappa B , Receptor 2 Toll-Like , Receptor 4 Toll-Like/metabolismo
5.
Animals (Basel) ; 12(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35625131

RESUMO

This study was conducted to evaluate the therapeutic effects and safety of GA in MG-infected broilers. Our results showed that the minimum inhibitory concentration of GA was 31.25 µg/mL. Moreover, GA inhibited the expression of MG adhesion protein (pMGA1.2) in the broilers' lungs. GA treatment clearly decreased the morbidity of CRD and mortality in the MG-infected broilers. Compared with the model group, GA treatment significantly decreased gross air sac lesion scores and increased average weight gain and feed conversion rate in the MG-infected broilers. Histopathological examination showed GA treatment attenuated MG-induced trachea, immune organ and liver damage in the broilers. Moreover, GA treatment alone did not induce abnormal morphological changes in these organs in the healthy broilers. Compared with the model group, serum biochemical results showed GA treatment significantly decreased the content of total protein, albumin, globulin, alanine aminotransferase, aspartate aminotransferase, total bilirubin, creatinine, uric acid, total cholesterol, and increased the content of albumin/globulin, alkaline phosphatase, apolipoprotein B and apolipoprotein A-I. In conclusion, GA displayed a significant therapeutic efficacy regarding MG infection and had no adverse effects on the broilers (100 mg/kg/d).

6.
Int Immunopharmacol ; 109: 108819, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35533556

RESUMO

Mycoplasma gallisepticum (MG) is the primary etiologic agent of chronic respiratory disease (CRD) in chickens. Respiratory tract inflammation and apoptosis are the main features of CRD. Andrographolide (Andro), a natural small molecule compound, is known for its excellent anti-pathogenic and anti-inflammatory properties. Hence, this study was to evaluate the anti-inflammation and anti-apoptosis effects of Andro as well as the underlying mechanism in the chicken lungs and primary alveolar type II epithelial cells (AEC II). Results showed Andro had no side effects on AEC II viability at concentrations below 200 µg/ml. Compared with the model group, terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling (TUNEL), western blot (WB), quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assays (ELISA) results showed Andro treatment significantly reduced apoptosis in the chicken lungs and AEC II, and down-regulated the expression levels of the protein of MG adhesin 1.2 (pMGA1.2), IL-1ß, TNF-α, IL-6, Bax, Caspase 9 and Caspase 3, and up-regulated the expression levels of Bcl-2 and Bcl-xL in the chicken lungs, serum and AEC II (P ≤ 0.05). Moreover, Andro inhibited the MG-induced JAK/PI3K/AKT signal pathway activation in the chicken lungs and AEC II. Inhibiting of the JAK/PI3K/AKT signal pathway significantly alleviated MG-induced inflammation and apoptosis in the AEC II. Andro may exert an anti-inflammatory and anti-apoptotic effect by inhibiting the JAK/PI3K/AKT signal pathway in the chicken lungs and AEC II. In conclusion, Andro could act as a potential agent against MG infection by inhibiting the JAK/PI3K/AKT signal pathway and pMGA1.2 expression in the chickens.


Assuntos
Mycoplasma gallisepticum , Células Epiteliais Alveolares/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose , Galinhas , Diterpenos , Inflamação/patologia , Pulmão/patologia , Mycoplasma gallisepticum/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
7.
J Agric Food Chem ; 70(6): 1996-2009, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35128924

RESUMO

Mycoplasma gallisepticum (MG) is the primary pathogen of chronic respiratory diseases (CRDs) in chickens. In poultry production, antibiotics are mostly used to prevent and control MG infection, but the drug resistance and residue problems caused by them cannot be ignored. Glycyrrhizic acid (GA) is derived from licorice, a herb traditionally used to treat various respiratory diseases. Our study results showed that GA significantly inhibited the mRNA and protein expression of pMGA1.2 and GapA in vitro and in vivo. Furthermore, the network pharmacology study revealed that GA most probably resisted MG infection through the MAPK signaling pathway. Our results demonstrated that GA inhibited MG-induced expression of MMP2/MMP9 and inflammatory factors through the p38 and JUN signaling pathways, but not the ERK pathway in vitro. Besides, histopathological sections showed that GA treatment obviously attenuated tracheal and lung damage caused by MG invasion. In conclusion, GA can inhibit MG-triggered inflammation and apoptosis by suppressing the expression of MMP2/MMP9 through the JNK and p38 pathways and inhibit the expression of virulence genes to resist MG. Our results suggest that GA might serve as one of the antibiotic alternatives to prevent MG infection.


Assuntos
Mycoplasma gallisepticum , Doenças das Aves Domésticas , Animais , Apoptose , Galinhas/genética , Ácido Glicirrízico/farmacologia , Inflamação , Mycoplasma gallisepticum/genética
8.
Res Vet Sci ; 141: 164-173, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34749101

RESUMO

Mycoplasma gallisepticum (MG) is a major poultry pathogen that can induce Chronic Respiratory Disease (CRD) in chickens, causing serious economic losses in the poultry industry worldwide. Increasing evidence suggests that microRNAs (miRNAs) act as a vital role in resisting microbial pathogenesis and maintaining cellular mechanism. Our previous miRNAs sequencing data showed gga-miR-24-3p expression level was significantly increased in MG-infected chicken lungs. The aim of this study is to reveal the cellular mechanism behind the MG-HS infection. We found that gga-miR-24-3p was significantly upregulated and Ras-related protein-B (RAP1B) was downregulated in chicken fibroblast cells (DF-1) with MG infection. Dual luciferase reporting assay and rescue assay confirmed that RAP1B was the target gene of gga-miR-24-3p. Meanwhile, overexpressed gga-miR-24-3p increased the levels of tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß), and significantly inhibited cell proliferation as well as promoted MG-infected DF-1 cell apoptosis, whereas inhibition of gga-miR-24-3p had the opposite effect. More importantly, the results of overexpression and knockdown of target gene RAP1B demonstrated that the presence of RAP1B promoted cell proliferation and it saved the reduced or increased cell proliferation caused by overexpression or inhibition of gga-miR-24-3p. Furthermore, the overexpression of gga-miR-24-3p could significantly inhibit the expression of MG-HS adhesion protein. Taken together, these findings demonstrate that DF-1 cells can resist MG-HS infection through gga-miR-24-3p/RAP1B mediated decreased proliferation and increased apoptosis, which provides a new mechanism of resistance to MG infection in vitro.


Assuntos
Galinhas , MicroRNAs , Infecções por Mycoplasma/veterinária , Proteínas rap de Ligação ao GTP/genética , Animais , Apoptose , Linhagem Celular , Proliferação de Células , MicroRNAs/genética , Infecções por Mycoplasma/prevenção & controle , Mycoplasma gallisepticum
9.
Microb Pathog ; 155: 104927, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33932542

RESUMO

Mycoplasma gallisepticum (MG) is a major poultry pathogen that can induce Chronic Respiratory Disease (CRD) in chickens, causing serious economic losses in the poultry industry worldwide. Increasing evidence suggests that microRNAs (miRNAs) act as a vital role in resisting microbial pathogenesis and maintaining cellular mechanism. Our previous miRNAs sequencing data showed that gga-miR-223 expression level significantly decreased in MG-infected chicken lungs. The aim of this study was to reveal the role of gga-miR-223 in MG-induced CRD progression. We found that gga-miR-223 was remarkably down regulated and forkhead box O3 (FOXO3) was up-regulated in both MG-infected chicken embryos lungs and the chicken embryonic fibroblast cell line (DF-1) by qPCR. FOXO3 was verified as the target gene of gga-miR-223 through bioinformatics analysis and dual-luciferase reporter assay. Further studies showed that overexpressed gga-miR-223 could promote cell proliferation, cell cycle, and inhibit cell apoptosis by notably promoting the expression of cell cycle marker genes cyclin-dependent kinase 1 (CDK1), cyclin-dependent kinase 6 (CDK6) and Cyclin D1 (CCND1) and inhibiting the expression of apoptosis markers Bcl-2-like 11(BIM), FAS ligand (FASLG) and TNF-related apoptosis-inducing ligand (TRAIL). As expected, FOXO3 knockdown group got similar results. Overexpression of gga-miR-223 observably promoted cell multiplication, cell cycle progression, and inhibited apoptosis of MG-infected DF-1 cells, while inhibited gga-miR-223 had the opposite effect. Taken together, upon MG-infection, downregulated gga-miR-223 could decrease proliferation, cycle progression, and increase apoptosis through directly targeting FOXO3 to exert an aggravating MG-infectious effect.


Assuntos
MicroRNAs , Mycoplasma gallisepticum , Animais , Apoptose , Proliferação de Células , Embrião de Galinha , Galinhas , Fibroblastos , MicroRNAs/genética
10.
Int Immunopharmacol ; 88: 106993, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33182066

RESUMO

Mycoplasma gallisepticum (MG) is the primary etiological agent of chicken chronic respiratory disease (CRD), which mainly causes inflammatory damage of the host respiratory system. Previous studies suggest that puerarin (PUE) plays a pivotal regulatory role in inflammatory diseases, whereas the impacts of PUE on MG-induced inflammation remain unclear. This study investigated the effects of PUE on MG-HS infection in vitro and in vivo and indicated its potential therapeutic and preventive value. Experimental results showed that PUE significantly suppressed pMGA1.2 expression, promoted MG-infected cell proliferation and cell cycle process by reducing apoptosis. Histopathological examination of lung tissue showed severe histopathological lesions including thickened alveolar walls, narrowed alveolar cavity, and inflammatory cell infiltration in the MG-infected chicken group. However, PUE treatment significantly ameliorated MG-induced pathological damage in lung. Compared to the MG-infected group, PUE effectively inhibited the expression of MG-induced inflammatory genes, including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), cytokines interleukin-6 (IL-6), toll-like receptor 6 (TLR6), myeloid differentiation primary response gene 88 (MyD88) and nuclear factor κB (NF-κB). Moreover, PUE dose-dependently inhibited MG-induced NF-κB p65 to enter the cell nucleus. In conclusion, our findings indicate that PUE treatment can efficiently inhibit MG-induced inflammatory response and apoptosis, and protect the lung from MG infection-induced damage by inhibiting the TLR6/MyD88/NF-κB signaling pathway activation. The study suggests that PUE may be a potential anti-inflammatory agent defense againstMGinfection in chicken.


Assuntos
Isoflavonas/farmacologia , Mycoplasma gallisepticum , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Receptor 6 Toll-Like/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Isoflavonas/química , Estrutura Molecular , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/genética , Transdução de Sinais , Receptor 6 Toll-Like/genética , Vasodilatadores/farmacologia
11.
Microb Pathog ; 149: 104552, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33010363

RESUMO

Mycoplasma gallisepticum (MG) infection is the main cause of chronic respiratory disease (CRD) characterized by severe respiratory inflammation in chickens. Polydatin (PD) is a resveratrol glycoside isolated from Polygonum cuspidatum, which has prominent anti-inflammatory effect. The purpose of this study was to investigate the therapeutic effect of PD against MG-induced inflammation in chicken and its underlying mechanism. Histopathological analysis showed that PD treatment (15, 30, and 45 mg/kg) apparently alleviated MG-induced pathological changes of chicken embryonic lung. In chicken embryo fibroblast (DF-1) cells, PD treatment (15, 30, and 60 µg/mL) could effectively suppress MG propagation, promote MG-infected cell proliferation and cell cycle progress, and inhibit MG-induced cell apoptosis. ELISA and qPCR assays showed that PD treatment significantly suppressed the expression of interleukin-6 (IL-6), IL-1ß and tumor necrosis factor-α (TNF-α) induced by MG both in vivo and in vitro. Besides, molecular studies indicated that the MG-induced levels of toll-like receptor-6 TLR6, myeloid differentiation-88 (MyD88) and nuclear factor κB (NF-κB) were significantly decreased by PD treatment. Moreover, immunofluorescence analysis showed that PD treatment restrained the MG-induced NF-κB-p65 nuclear translocation. Taken together, these results indicate the protective effects of PD against MG-induced inflammation injury in chicken were mainly by inhibiting the TLR6/MyD88/NF-κB pathway.


Assuntos
Mycoplasma gallisepticum , Animais , Embrião de Galinha , Galinhas/metabolismo , Glucosídeos , Inflamação/tratamento farmacológico , Mycoplasma gallisepticum/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Estilbenos , Receptor 6 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...