Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 24(4): e202300327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438715

RESUMO

Potassium-ion battery is rich in resources and cheap in price, in the era of lithium-ion battery commercialization, potassium-ion battery is the most likely to replace it. Based on the classification and summary of electrode materials for potassium-ion batteries, this paper focuses on the introduction of manganese-based oxide KxMnO2. The layered KxMnO2 has a large layer spacing and can be embedded with large size potassium-ions. This paper focuses on the preparation and doping of manganese-based cathode materials for potassium-ion batteries, summarizes the main challenges of KxMnO2-based cathode materials in the current stage of research and further looks into its future development direction.

2.
Small ; 19(20): e2208005, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807840

RESUMO

P2 layered oxides have attracted more and more attention as cathode materials of high-power sodium-ion batteries (SIBs). During the charging process, the release of sodium ions leads to layer slip, which leads to the transformation of P2 phase into O2 phase, resulting in a sharp decline in capacity. However, many cathode materials do not undergo P2 -O2 transition during charging and discharging, but form a "Z" phase. It is proved that the iron-containing compound Na0.67 Ni0.1 Mn0.8 Fe0.1 O2 formed the "Z" phase of the symbiotic structure of the P phase and O phase during high-voltage charging through ex-XRD and HAADF-STEM. During the charging process, the cathode material undergoes a structural change of P2 -OP4 -O2 . With the increase of charging voltage, the O-type superposition mode increases to form an ordered OP4 phase, and the P2 -type superposition mode disappears after further charging to form a pure O2 phase. 57 Fe-Mössbauer spectroscopy revealed that no migration of Fe ions is detected. The O-Ni-O-Mn-Fe-O bond formed in the transition metal MO6 (M = Ni, Mn, Fe) octahedron can inhibit the elongation of the Mn-O bond and improve the electrochemical activity so that P2-Na0.67 Ni0.1 Mn0.8 Fe0.1 O2 has an excellent capacity of 172.4 mAh g-1 and a coulombic efficiency close to 99% at 0.1C.

3.
Phys Chem Chem Phys ; 24(20): 12300-12310, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35545001

RESUMO

A series of α-Mn1-xSnxO2 was synthesized by a simple hydrothermal method to shed light on the effect of substitution. Powder X-ray diffraction and scanning electron microscopy indicated that the particle size, crystal structure and morphology of the samples did not change with an increase of the Sn content. Sn, Mn, O and K elements were all uniformly distributed in the particles, which was observed using energy-dispersive X-ray spectroscopy. However, thermogravimetric analysis showed that the structural stability increased, and an increase of the Mn oxidation state from 3.8+ to nearly 4.0+ was observed by X-ray absorption spectroscopy. Besides, 119Sn Mössbauer spectroscopy revealed that the Sn ions are all 4+ and incorporate into the lattice by replacing the Mn ions. The DC and AC magnetic susceptibility measurements down to 2 K exhibited a spin-glass phenomenon, and the freezing temperature, Tf, decreased from 44 K to 30.5 K with increasing Sn content. This indicates that increased disorder by nonmagnetic substitution results in the enhancement of the frustration in the lattice. Meanwhile, with doping of Sn4+ ions, the Curie-Weiss temperature increased, indicating enhanced antiferromagnetic interaction. Although the mixed valence of Mn3+ and Mn4+ almost disappeared, the reduction of charge disorder did not lead to the magnetic ordering in the sample. Since the Sn4+ ions are diamagnetic and have the same magnetic effect as cation vacancies in the lattice, so it is reasonable to believe that the spin-glass transition in α-MnO2 results from the cation vacancies rather than the mixture of Mn3+ and Mn4+.

4.
ACS Appl Mater Interfaces ; 14(9): 11359-11374, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35191662

RESUMO

A new environmentally friendly and economical recycling process for extracting metals from spent lithium-ion batteries (LIBs) using sulfuric acid and malonic acid as leaching agents is proposed. By applying Box-Behnken design (BBD) and response surface methodology (RSM) optimization techniques, the global optimal solution of the maximum leaching rate of metals in spent LIBs is realized. The results show that under the optimal conditions of 0.93 M H2SO4, 0.85 M malonic acid, and a liquid/solid ratio of 61 g·L-1, a temperature of 70 °C and 5 vol % of 30% H2O2, 99.79% Li, 99.46% Ni, 97.24% Co, and 96.88% Mn are recovered within 81 min. The error between the theoretical value and the actual value of the metal leaching rate predicted by the regression model is less than 1.0%. Additionally, the study of leaching kinetics reveals that the leaching process of Li, Ni, Co, and Mn in spent cathode materials was affected by the synergistic effect of interfacial mass transfer and solid product layer diffusion. Economic analysis reveals that evaluation index should be fully considered when formulating recovery processes for different metals. This process can reduce the environmental risks of heavy metal disposal and allow the reuse of metals recovered from spent LIBs.

5.
Chem Rec ; 22(1): e202100169, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34418292

RESUMO

Zinc metal is abundant in nature, non-toxic, harmless, and cheap. Zinc-ion batteries (ZIBs) have also emerged as the times require, which has attracted scholars' research interest. In the zinc-ion batteries, the cathode material is indispensable. Manganese oxides are widely used in electrode materials because of their various valence states (+2, +3, +4, +7). ZnMn2 O4 (ZMO) is a mixed metal oxide with a spinel structure similar to LiMn2 O4 . Due to the synergistic effect of Zn and Mn, it has the advantages of high theoretical capacity. In recent years, researchers have gradually applied ZnMn2 O4 to zinc ion batteries. In order to obtain high-energy-density zinc ion batteries, it is also very important to match electrolytes with a wide operating voltage window and develop a highly reversible anode. In the first instance, we investigate the research progress of spinel ZnMn2 O4 as a reliable candidate material for zinc ion batteries. Later on, we review the optimization and modification measures of anode and electrolyte to improve the electrochemical properties of spinel ZnMn2 O4 . On this basis, we propose the reasonable research direction and development prospects for this material. It is hoped that there will be a help to researchers in this field.

6.
ACS Appl Mater Interfaces ; 13(43): 51095-51106, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672516

RESUMO

Thanks to their high conductivity and theoretical capacity, transition metal selenides have demanded significant research attention as prospective anodes for sodium-ion batteries. Nevertheless, their practical applications are hindered by finite cycle life and inferior rate performance because of large volume expansion, polyselenide dissolution, and sluggish dynamics. Herein, the nitrogen-doped carbon (NC)-coated FeSe2 nanoparticles encapsulated in NC nanoboxes (termed FeSe2@NDC NBs) are fabricated through the facile thermal selenization of polydopamine-wrapped Prussian blue precursors. In this composite, the existing nitrogen-doped dual carbon layer improves the intrinsic conductivity and structural integrity, while the unique porous yolk-shell architecture significantly mitigates the volume swelling during the sodium/desodium process. Moreover, the derived Fe-N-C bonds can effectively capture polyselenide, as well as promote Na+ transportation and good reversible conversion reaction. As expected, the FeSe2@NDC NBs deliver remarkable rate performance (374.9 mA h g-1 at 10.0 A g-1) and long-cycling stability (403.3 mA h g-1 over 2000 loops at 5.0 A g-1). When further coupled with a self-made Na3V2(PO4)3@C cathode in sodium-ion full cells, FeSe2@NDC NBs also exhibit considerably high and stable sodium-storage performance.

7.
ACS Appl Mater Interfaces ; 13(42): 49952-49963, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34652147

RESUMO

Electrode materials with high conductivities that are compatible with flexible substrates are important for preparing high-capacitance electrode materials and improving the energy density of flexible supercapacitors. Here, we report the design and fabrication of a new type of flexible electrode based on nanosheet architectures of a Co-Fe alloy (FeCo-A) coated with ternary metal sulfide composites (FeCo-Ss) on silver-sputtered carbon cloth. The high conductivity of the flexible substrate and the iron-cobalt alloy skeleton enables good electron transmission through the material. In particular, the outer FeCo-S layer has an average thickness of ∼30 nm, providing many active sites. This layer also inhibits the oxidation of the alloy. The electrode material is close to 20 nm thick, which limits inaccessible volumes and promotes high utilization of FeCo-alloy@FeCo-sulfide (FeCo-A-S). The additive-free FeCo-A-S electrode has a high specific capacitance of 2932.2 F g-1 at 1.0 A g-1 and a superior rate capability. All-solid-state supercapacitors based on these electrodes have a high power density of 8000 W kg-1 and a high energy density of 46.1 W h kg-1.

8.
Small ; 17(46): e2101887, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34553493

RESUMO

Transition-metal selenides (TMSs) have emerged as prospective anode materials for sodium ion batteries (SIBs), owing to their considerable theoretical capacity and intrinsic high electronic conductivity. Whereas, TMSs still suffer from poor rate capability and inferior cycling stability induced by sluggish kinetics and severe volume changes during de/sodiation processes. Herein, a hierarchical composite consisting of a zinc-cobalt bimetallic selenide yolk and nitrogen-doped double carbon shell (denoted as ZnCoSe@NDC) is engineered and fabricated successfully. The architecture of the as-fabricated material improves the Na-ion storage performance via increasing the electron transfer kinetics, accommodating volume expansion, and mitigating the generation of by-products. As expected, the ZnCoSe@NDC electrode delivers superior sodium storage performance with long cycling stability (344.5 mAh g-1 at 5.0 A g-1 over 2000 long-term cycles) and high-rate performance (319.2 mAh g-1 at 10.0 A g-1 ). Meanwhile, the NVP@C//ZnCoSe@NDC full SIB cells are constructed successfully, retaining 96.3% of its initial capacity at 0.5A g-1 after 200 loops. The outstanding electrochemical performance and the construction of hybrid SIBs will have far-reaching influences on the development of the various rechargeable batteries.

9.
ACS Appl Mater Interfaces ; 13(15): 17658-17667, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33826308

RESUMO

Transition-metal sulfides (TMS) are one of the most promising cathode catalysts for Li-O2 batteries (LOBs) owing to their excellent stabilities and inherent metallicity. In this work, a highly efficient mode has been used to synthesize Co@CNTs [pyrolysis products of metal-organic frameworks (MOFs)]-derived CoS2(CoS)@NC. Benefiting from the special yolk-shell hierarchical porous morphology, the existence of Co-N bonds, and dual-function catalytic activity (ORR/OER) of the open metal sites contributed by MOFs, the CoS2@NC-400/AB electrode illustrated excellent charge-discharge cycling for up to nearly 100 times at a current density of 0.1 mA cm-2 under a limited capacity of 500 mA h g-1 (based on the total weight of CoS2@NC and AB) with a high discharge voltage plateau and a low charge cut-off voltage. Meanwhile, the average transferred electron number (n) is around 3.7 per O2 molecule for CoS2@NC-400, which is the chief approach for a four-electron pathway of the ORR under alkaline media. Therefore, we believe that the novel CoS2@NC-400/AB electrode could serve as an excellent catalyst in the LOBs.

10.
J Colloid Interface Sci ; 544: 164-171, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30836258

RESUMO

P2-type transition metal oxides are promising cathode materials for sodium-ion batteries. However, due to irreversible phase transition, these batteries exhibit low capacity and poor cycling stability. In this study, highly dense, spherical P2-type oxides Na0.67[Ni0.167Co0.167Mn0.67]1-xTixO2 (0 ≤ x ≤ 0.4) are synthesized by calcining a mixture of Na2CO3, spherical ternary precursor powder Ni0.167Co0.167Mn0.67O2, and different amounts of nanoscale TiO2. High-temperature X-ray diffraction results obtained during calcination reveal 850 °C as the optimum calcination temperature. All materials exhibit high crystallinity without any impurity phases. The initial reversible capacities of the as-prepared samples decrease with increasing Ti substitution; however, these samples attain better cycling stability. When x = 0.2, the sample delivers an initial discharge capacity of 138 mAh g-1 at 20 mA g-1 between 2 and 4.5 V. Even at 100 mA g-1, the sample delivers 101 mAh g-1 reversible capacity in the first cycle with capacity retention of 89.4% after 300 cycles. Moreover, the material shows sloping potential profiles, with the average voltages reaching up to ∼3.8 V. The ex-situ X-ray diffraction (XRD) results of the samples after cycling demonstrate that Ti substitution improves the structural stability. In general, Ti substitution is an effective approach for improving the electrochemical performance of ternary P2-type oxide Na0.67Ni0.167Co0.167Mn0.67O2.

11.
J Hazard Mater ; 368: 714-721, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30739024

RESUMO

To recycle the waste and meet the demand for anode materials for Li-ion battery, α-Fe2O3/C for use as anode material is successfully prepared via a simple hydrothermal process using acid-pickled iron oxide red as raw material. The techniques of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy are used to characterize the product. The synthesis conditions, including temperature and time, are optimized by orthogonal experimental design. The optimal reaction temperature, reaction time, Fe2O3/SO42- ratio, Fe2O3/glucose ratio are 120 °C, 30 h, 20:2 and 1:1, respectively. The sample prepared at optimal conditions exhibits a high initial specific capacity of 1144/1535 mA h g-1 at 100 mA g-1 and a superior cycling performance of ˜800 mA h g-1 after 200 cycles. Accordingly, this method provides information for the synthesis of α-Fe2O3/C with acid-pickled iron oxide red for the first time, which may help alleviate the problem of energy shortage and environmental pollution through the rational use of resources.

12.
ACS Appl Mater Interfaces ; 10(25): 21281-21290, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29874026

RESUMO

To enable lithium-oxygen batteries for practical applications, the design and efficient synthesis of nonprecious metal catalysts with high activity and stable structural properties are demanded. The objective is to accelerate the sluggish kinetics of both oxygen reduction reaction and oxygen evolution reaction by facilitating electronic/ionic transport and improving oxygen diffusion in a porous structure. In this study, high-surface-area and porous cobalt phosphide (Co2P) nanosheets are synthesized via an environmentally safe hydrothermal method, where red phosphorous is used as the phosphorous source. It was found that the as-prepared Co2P/acetylene black (AB) composite delivered enhanced electrochemical performances, such as high capacities of 2551 mA h g-1 (based on the total weight of Co2P and AB) or 5102 mA h g-1 (based on the weight of Co2P or AB) and a good cycle life of more than 1800 h (132 cycles) in lithium-oxygen battery. The rational design of the Co2P/AB porous oxygen electrode structure provides sufficient accessible reaction sites and a short diffusion path for electrolyte penetration and diffusion of O2.

13.
Acta Crystallogr C ; 69(Pt 5): 494-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23629899

RESUMO

The asymmetric unit of the title compound, [Pb2(C8H3IO4)2(CH4O)]n, contains two Pb(II) atoms, two 5-iodoisophthalate (5-IIP(2-)) ligands and one coordinated methanol molecule. One Pb atom is eight-coordinated, surrounded by seven carboxylate O atoms from five 5-IIP(2-) ligands and one O atom from the terminal methanol ligand. The other Pb atom is seven-coordinated in a hemidirected geometry, surrounded by seven carboxylate O atoms from five 5-IIP(2-) ligands. Both Pb atoms are connected by carboxylate groups to form a one-dimensional infinite rod along the a axis; neighbouring rods are further linked by the aromatic rings of 5-IIP(2-) to generate the final three-dimensional structure with channels in the a direction. An O-H···O hydrogen bond between the methanol ligand and one of the carboxylate groups of a 5-IIP(2-) ligand stablizes the three-dimensional framework. Interestingly, a centrosymmetric rhombus-shaped I4 unit is formed by four 5-IIP(2-) ligands, with I···I distances of 3.8841 (8) and 3.9204 (8) Å.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...