Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 345: 123460, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290655

RESUMO

Despite the increasing production, use, and ubiquitous occurrence of novel brominated flame retardants (NBFRs), little information is available regarding their fate in aquatic organisms. In this study, the bioaccumulation and biotransformation of two typical NBFRs, i.e., 1,2-bis (2,4,6-tribromophenoxyethane) (BTBPE) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH), were investigated in tissues of zebrafish (Danio rerio) being administrated a dose of target chemicals through their diet. Linear accumulation was observed for both BTBPE and TBECH in the muscle, liver, gonads, and brain of zebrafish, and the elimination of BTBPE and TBECH in all tissues followed pseudo-first-order kinetics, with the fastest depuration rate occurring in the liver. BTBPE and TBECH showed low bioaccumulation potential in zebrafish, with biomagnification factors (BMFs) < 1 in all tissues. Individual tissues' function and lipid content are vital factors affecting the distribution of BTBPE and TBECH. Stereoselective accumulation of TBECH enantiomers was observed in zebrafish tissues, with first-eluting enantiomers, i.e. E1-α-TBECH and E1-ß-TBECH, preferentially accumulated. Additionally, the transformation products (TPs) in the zebrafish liver were comprehensively screened and identified using high-resolution mass spectrometry. Twelve TPs of BTBPE and eight TPs of TBECH were identified: biotransformation pathways involving ether cleavage, debromination, hydroxylation, and methoxylation reactions for BTBPE and hydroxylation, debromination, and oxidation processes for TBECH. Biotransformation is also a vital factor affecting the bioaccumulation potential of these two NBFRs, and the environmental impacts of NBFR TPs should be further investigated in future studies. The findings of this study provide a scientific basis for an accurate assessment of the ecological and environmental risks of BTBPE and TBECH.


Assuntos
Retardadores de Chama , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Bioacumulação , Estereoisomerismo , Biotransformação , Cicloexanos/metabolismo , Retardadores de Chama/análise
2.
Environ Pollut ; 316(Pt 1): 120536, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367513

RESUMO

Fetal exposure to multiple organic contaminants (OCs) is a public concern because of the adverse effects of OCs on early life development. Infant hair has the potential to be used as an alternative matrix to identify susceptible fetuses, owing to its reliability, sensitivity, and advantages associated with sampling, handling, and ethics. However, the applicability of infant hair for assessing in utero exposure to OCs is still limited. In this study, 57 infant hair samples were collected in Guangzhou, South China, to evaluate the levels and compositions of typical OCs in the fetus. Most of the target OCs were detected in infant hair, with medians of 144 µg/g, 17.7 µg/g, 192 ng/g, 46.9 ng/g, and 1.36 ng/g for phthalate esters (PAEs), alternative plasticizers (APs), organophosphorus flame retardants (OPFRs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs), respectively. Meanwhile, paired maternal hair (0-9 cm from the scalp) was collected to examine the associations between maternal and infant hair for individual compounds. Low-brominated PBDEs tended to deposit in infant hair, with median concentrations approximately two times higher than those in maternal samples. Levels of PBDEs and 4,4'-dichlorodiphenyldichloroethylene (p,p'-DDE) in paired maternal and infant hair showed strong positive correlations (p < 0.05), while most plasticizers (PAEs and APs) were poorly correlated between paired hair samples. Exposure sources were responsible for the variation in correlation between OC levels in the paired infant and maternal samples. Crude relationships between fetal exposure to OCs and birth size were examined using the Bayesian kernel machine regression (BKMR) model. BDE-28 was found to be adversely associated with the birth size. This study provides referential information for evaluating in utero exposure to OCs and their health risks based on infant hair.


Assuntos
Retardadores de Chama , Éteres Difenil Halogenados , Feminino , Humanos , Lactente , Teorema de Bayes , China , Retardadores de Chama/análise , Cabelo/química , Éteres Difenil Halogenados/análise , Exposição Materna , Plastificantes , Reprodutibilidade dos Testes
3.
Ecotoxicol Environ Saf ; 249: 114469, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321685

RESUMO

The tissue-specific bioaccumulation of Dechlorane Plus (DP) isomers was investigated in two predator fish species (redtail catfish, RF; and oscar fish, OF) that were feeding on tiger barb (TB), which was exposed to syn-DP and anti-DP isomers. The biotransformation potential of DP isomers was examined by in vitro metabolism using fish liver microsomes. No difference in accumulation behaviors of DP isomers was observed between RF and OF, and the accumulation of both syn- and anti-DP isomers exhibiting a linear increase trend with the exposure time in all fish tissues. The assimilation efficiencies and depuration rates for syn-DP and anti-DP were determined to be the highest in the liver. Biomagnification factors (BMFs) for both syn-DP and anti-DP were higher than one in the serum and gastrointestinal tract of fish, whereas were less than one in the other tissues. The wet-weight concentrations of DP isomers in tissues were significantly correlated with the lipid contents in both fish species, indicating that the tissue distribution of DP isomers occurred through passive diffusion to the lipid compartments in vivo. Tissue-specific compositions of DP isomers were observed, with anti-DP selectively accumulating in the liver, gonad, serum, and gills, whilst syn-DP in the carcass and GI tract. However, after being normalized of all tissues, the fish showed no selective accumulation of DP isomers during the exposure period, and selective accumulation of syn-DP was observed during the depuration period. No potential DP metabolites were detected in the fish tissues and in vitro metabolism systems. The main cause of this stereoselective DP isomer accumulation could have been the selective excretion of anti-DP isomer through the fish feces.


Assuntos
Peixes-Gato , Retardadores de Chama , Hidrocarbonetos Clorados , Compostos Policíclicos , Animais , Retardadores de Chama/análise , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Compostos Policíclicos/análise , Peixes-Gato/metabolismo , Lipídeos
4.
Sci Total Environ ; 806(Pt 1): 150411, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563899

RESUMO

To assess the impacts of regulations and laws enhancing the management of e-waste in China, hair samples of local residents and dismantling workers in a former e-waste area in 2016 and 2019, five and eight years after the implementation of legislation and regulations in this area since 2011, respectively. The temporal changes in levels of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organophosphorus flame retardants (OPFRs) in the hair samples were investigated. Besides, the levels of these organic contaminants in hair samples collected from the same area in 2009, 2011, and 2015 reported in previous studies were used as comparison. The highest median levels of Σ9PCBs (719 ng/g), Σ3Penta-BDEs (16.1 ng/g), and Σ3Octa-BDEs (8.46 ng/g) in hair were found in 2011, with a significant decrease trend was observed from 2011 to 2019 (p < 0.05). As for Deca-BDE, the levels reached the maximum in 2015 (133 ng/g), following by a significant decrease to 2016 (7.46 ng/g) and 2019 (2.61 ng/g) (p < 0.05). The median levels of Σ8OPFRs, also decreased significantly (p < 0.05) from 2015 (357 ng/g) to 2016 (264 ng/g) and 2019 (112 ng/g). Moreover, a significantly increasing trend was observed for the ratios of triphenyl phosphate (TPHP) and tris(2-chloropropyl) phosphate (TCIPP), two predominant OPFRs, to Deca-BDE from 2015 to 2019 (p < 0.01), suggesting a shift of "legacy" to "emerging" contaminants released from e-waste recycling in this area. The temporal changes in hair levels of typical organic contaminants in residents and dismantling workers indicated the effectiveness of the regulations on informal e-waste recycling activities and solid waste in China.


Assuntos
Resíduo Eletrônico , Retardadores de Chama , China , Resíduo Eletrônico/análise , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Humanos , Reciclagem
5.
Chemosphere ; 262: 127807, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32763577

RESUMO

Human hair has been identified as a non-invasive alternative matrix for assessing the human exposure to specific organic contaminants. In the present study, a solvent-saving analytical method for the simultaneous determination of 8 polybrominated diphenyl ethers (PBDEs), 3 hexabromocyclododecanes (HBCDDs), 12 phosphorus flame retardants (PFRs), and 4 emerging PFRs (ePFRs) has been developed and validated for the first time. Hair sample preparation protocols include precleaning with Milli-Q water, digestion with HNO3/H2O2 (1:1, v/v), liquid-liquid extraction with hexane:dichloromethane (4:1, v/v), and fractionation and cleanup on a Florisil cartridge. The method was validated by using two levels of spiked hair samples of 3 replicates for each spiking group. Limits of quantification (LOQs) were 0.12-22.4 ng/g for all analytes, average values of accuracies were ranging between 88 and 115%, 82-117%, 81-128%, and 81-95% for PBDEs, HBCDDs, PFRs, and ePFRs, respectively; and precision was also acceptable (RSD < 20%) for all analytes. Eventually, this method was applied to measure the levels of the targeted analytes in hair samples of e-waste dismantling workers (n = 14) from Qingyuan, South China. Median values ranged between 3.00 and 18.1 ng/g for PBDEs, 0.84-4.04 ng/g for HBCDDs, 2.13-131 ng/g PFRs, and 1.49-29.4 ng/g for ePFRs, respectively. PFRs/ePFRs constitute the major compounds in human hair samples, implying the wide use of PFRs/ePFRs as replacements of PBDEs and HBCDDs, as well the potential high human exposure risks of PFRs/ePFRs. Overall, this work will allow to a comprehensive assessment of human exposure to multiple groups of FRs using hair as a non-invasive bioindicator.


Assuntos
Retardadores de Chama/análise , Cabelo/química , Éteres Difenil Halogenados/análise , Hidrocarbonetos Bromados/análise , China , Monitoramento Ambiental/métodos , Humanos , Peróxido de Hidrogênio/análise , Extração Líquido-Líquido , Fósforo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...