Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Sci Bull (Beijing) ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38760248

RESUMO

Mechanical loading is required for bone homeostasis, but the underlying mechanism is still unclear. Our previous studies revealed that the mechanical protein polycystin-1 (PC1, encoded by Pkd1) is critical for bone formation. However, the role of PC1 in bone resorption is unknown. Here, we found that PC1 directly regulates osteoclastogenesis and bone resorption. The conditional deletion of Pkd1 in the osteoclast lineage resulted in a reduced number of osteoclasts, decreased bone resorption, and increased bone mass. A cohort study of 32,500 patients further revealed that autosomal dominant polycystic kidney disease, which is mainly caused by loss-of-function mutation of the PKD1 gene, is associated with a lower risk of hip fracture than those with other chronic kidney diseases. Moreover, mice with osteoclast-specific knockout of Pkd1 showed complete resistance to unloading-induced bone loss. A mechanistic study revealed that PC1 facilitated TAZ nuclear translocation via the C-terminal tail-TAZ complex and that conditional deletion of Taz in the osteoclast lineage resulted in reduced osteoclastogenesis and increased bone mass. Pharmacological regulation of the PC1-TAZ axis alleviated unloading- and estrogen deficiency- induced bone loss. Thus, the PC1-TAZ axis may be a potential therapeutic target for osteoclast-related osteoporosis.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167251, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795835

RESUMO

Exposure of articular cartilage to excessive mechanical loading is closely related to the pathogenesis of osteoarthritis (OA). However, the exact molecular mechanism by which excessive mechanical loading drives OA remains unclear. In vitro, primary chondrocytes were exposed to cyclic tensile strain at 0.5 Hz and 10 % elongation for 30 min to simulate excessive mechanical loading in OA. In vivo experiments involved mice undergoing anterior cruciate ligament transection (ACLT) to model OA, followed by interventions on Rcn2 expression through adeno-associated virus (AAV) injection and tamoxifen-induced gene deletion. 10 µL AAV2/5 containing AAV-Rcn2 or AAV-shRcn2 was administered to the mice by articular injection at 1 week post ACLT surgery, and Col2a1-creERT: Rcn2flox/flox mice were injected with tamoxifen intraperitoneally to obtain Rcn2-conditional knockout mice. Finally, we explored the mechanism of Rcn2 affecting OA. Here, we identified reticulocalbin-2 (Rcn2) as a mechanosensitive factor in chondrocytes, which was significantly elevated in chondrocytes under mechanical overloading. PIEZO type mechanosensitive ion channel component 1 (Piezo1) is a critical mechanosensitive ion channel, which mediates the effect of mechanical loading on chondrocytes, and we found that increased Rcn2 could be suppressed through knocking down Piezo1 under excessive mechanical loading. Furthermore, chondrocyte-specific deletion of Rcn2 in adult mice alleviated OA progression in the mice receiving the surgery of ACLT. On the contrary, articular injection of Rcn2-expressing adeno-associated virus (AAV) accelerated the progression of ACLT-induced OA in mice. Mechanistically, Rcn2 accelerated the progression of OA through promoting the phosphorylation and nuclear translocation of signal transducer and activator of transcription 3 (Stat3).

3.
Theranostics ; 14(6): 2544-2559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646641

RESUMO

Background: Mechanical forces are indispensable for bone healing, disruption of which is recognized as a contributing cause to nonunion or delayed union. However, the underlying mechanism of mechanical regulation of fracture healing is elusive. Methods: We used the lineage-tracing mouse model, conditional knockout depletion mouse model, hindlimb unloading model and single-cell RNA sequencing to analyze the crucial roles of mechanosensitive protein polycystin-1 (PC1, Pkd1) promotes periosteal stem/progenitor cells (PSPCs) osteochondral differentiation in fracture healing. Results: Our results showed that cathepsin (Ctsk)-positive PSPCs are fracture-responsive and mechanosensitive and can differentiate into osteoblasts and chondrocytes during fracture repair. We found that polycystin-1 declines markedly in PSPCs with mechanical unloading while increasing in response to mechanical stimulus. Mice with conditional depletion of Pkd1 in Ctsk+ PSPCs show impaired osteochondrogenesis, reduced cortical bone formation, delayed fracture healing, and diminished responsiveness to mechanical unloading. Mechanistically, PC1 facilitates nuclear translocation of transcriptional coactivator TAZ via PC1 C-terminal tail cleavage, enhancing osteochondral differentiation potential of PSPCs. Pharmacological intervention of the PC1-TAZ axis and promotion of TAZ nuclear translocation using Zinc01442821 enhances fracture healing and alleviates delayed union or nonunion induced by mechanical unloading. Conclusion: Our study reveals that Ctsk+ PSPCs within the callus can sense mechanical forces through the PC1-TAZ axis, targeting which represents great therapeutic potential for delayed fracture union or nonunion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Condrócitos , Consolidação da Fratura , Osteogênese , Células-Tronco , Canais de Cátion TRPP , Animais , Consolidação da Fratura/fisiologia , Camundongos , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética , Condrócitos/metabolismo , Células-Tronco/metabolismo , Osteogênese/fisiologia , Camundongos Knockout , Condrogênese/fisiologia , Periósteo/metabolismo , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Modelos Animais de Doenças , Masculino
4.
Adv Sci (Weinh) ; 11(14): e2305856, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308197

RESUMO

Chronic diabetic wounds are a serious complication of diabetes and often result in limb amputations and confer high mortality rates. The proinflammatory secretome in the wound perpetuates defective neovascularization and contributes to dysregulated tissue repair. This study aims to design a gelatin methacrylamide (GelMA) hydrogel to sustained the release of grancalcin-neutralizing antibody (GCA-NAb) and evaluate it as a potential scaffold to promote diabetic wound healing. Results show that the expression of grancalcin(GCA), a protein secreted by bone marrow-derived immune cells, is elevated in the wound sites of individuals and animals with diabetic ulcers. Genetic inhibition of grancalcin expression accelerates vascularization and healing in an animal model. Mechanistic studies show that grancalcin binds to transient receptor potential melastatin 8(TRPM8) and partially inactivates its downstream signaling pathways, thereby impairing angiogenesis in vitro and ex vivo. Systemic or topical administration of a GCA-NAb accelerate wound repair in mice with diabetes. The data suggest that GCA is a potential therapeutic target for the treatment of diabetic ulcers.


Assuntos
Proteínas de Ligação ao Cálcio , Diabetes Mellitus , Animais , Camundongos , Angiogênese , Complicações do Diabetes , Diabetes Mellitus/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Úlcera , Cicatrização/fisiologia , Proteínas de Ligação ao Cálcio/antagonistas & inibidores
5.
Bone Res ; 12(1): 6, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267422

RESUMO

Skeletal stem/progenitor cell (SSPC) senescence is a major cause of decreased bone regenerative potential with aging, but the causes of SSPC senescence remain unclear. In this study, we revealed that macrophages in calluses secrete prosenescent factors, including grancalcin (GCA), during aging, which triggers SSPC senescence and impairs fracture healing. Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair. Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence. Mechanistically, GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction, resulting in cellular senescence. Depletion of Plxnb2 in SSPCs impaired fracture healing. Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice. Thus, our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence, and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals.


Assuntos
Calosidades , Fraturas Ósseas , Idoso , Humanos , Animais , Camundongos , Consolidação da Fratura , Senescência Celular , Envelhecimento , Macrófagos , Células-Tronco
6.
Trends Endocrinol Metab ; 35(5): 439-451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38242815

RESUMO

The bone serves as an energy reservoir and actively engages in whole-body energy metabolism. Numerous studies have determined fuel requirements and bioenergetic properties of bone under physiological conditions as well as the dysregulation of energy metabolism associated with bone metabolic diseases. Here, we review the main sources of energy in bone cells and their regulation, as well as the endocrine role of the bone in systemic energy homeostasis. Moreover, we discuss metabolic changes that occur as a result of osteoporosis. Exploration in this area will contribute to an enhanced comprehension of bone energy metabolism, presenting novel possibilities to address metabolic diseases.


Assuntos
Osso e Ossos , Metabolismo Energético , Homeostase , Humanos , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Osso e Ossos/metabolismo , Animais , Osteoporose/metabolismo
7.
Nat Commun ; 15(1): 97, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167327

RESUMO

The crosstalk between the bone and adipose tissue is known to orchestrate metabolic homeostasis, but the underlying mechanisms are largely unknown. Herein, we find that GCA + (grancalcin) immune cells accumulate in the bone marrow and release a considerable amount of GCA into circulation during obesity. Genetic deletion of Gca in myeloid cells attenuates metabolic dysfunction in obese male mice, whereas injection of recombinant GCA into male mice causes adipose tissue inflammation and insulin resistance. Mechanistically, we found that GCA binds to the Prohibitin-2 (PHB2) receptor on adipocytes and activates the innate and adaptive immune response of adipocytes via the PAK1-NF-κB signaling pathway, thus provoking the infiltration of inflammatory immune cells. Moreover, we show that GCA-neutralizing antibodies improve adipose tissue inflammation and insulin sensitivity in obese male mice. Together, these observations define a mechanism whereby bone marrow factor GCA initiates adipose tissue inflammation and insulin resistance, showing that GCA could be a potential target to treat metainflammation.


Assuntos
Resistência à Insulina , Masculino , Camundongos , Animais , Resistência à Insulina/genética , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Obesidade/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
8.
RMD Open ; 9(4)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114197

RESUMO

OBJECTIVES: Knee synovitis is a highly prevalent and potentially curable condition for knee pain; however, its pathogenesis remains unclear. We sought to assess the associations of the gut fungal microbiota and the fungi-bacteria correlation network with knee synovitis. METHODS: Participants were derived from a community-based cross-sectional study. We performed an ultrasound examination of both knees. A knee was defined as having synovitis if its synovium was ≥4 mm and/or Power Doppler (PD) signal was within the knee synovium area (PD synovitis). We collected faecal specimens from each participant and assessed gut fungal and bacterial microbiota using internal transcribed spacer 2 and shotgun metagenomic sequencing. We examined the relation of α-diversity, ß-diversity, the relative abundance of taxa and the interkingdom correlations to knee synovitis. RESULTS: Among 977 participants (mean age: 63.2 years; women: 58.8%), 191 (19.5%) had knee synovitis. ß-diversity of the gut fungal microbiota, but not α-diversity, was significantly associated with prevalent knee synovitis. The fungal genus Schizophyllum was inversely correlated with the prevalence and activity (ie, control, synovitis without PD signal and PD synovitis) of knee synovitis. Compared with those without synovitis, the fungi-bacteria correlation network in patients with knee synovitis was smaller (nodes: 93 vs 153; edges: 107 vs 244), and the average number of neighbours was fewer (2.3 vs 3.2). CONCLUSION: Alterations of gut fungal microbiota and the fungi-bacteria correlation network are associated with knee synovitis. These novel findings may help understand the mechanisms of the gut-joint axis in knee synovitis and suggest potential targets for future treatment.


Assuntos
Disbiose , Sinovite , Humanos , Feminino , Pessoa de Meia-Idade , Disbiose/microbiologia , Estudos Transversais , Sinovite/patologia , Fungos , Bactérias/genética
9.
Cell Metab ; 35(11): 1915-1930.e8, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37703873

RESUMO

Weight regain after weight loss is a major challenge in the treatment of obesity. Immune cells adapt to fluctuating nutritional stress, but their roles in regulating weight regain remain unclear. Here, we identify a stem cell-like CD7+ monocyte subpopulation accumulating in the bone marrow (BM) of mice and humans that experienced dieting-induced weight loss. Adoptive transfer of CD7+ monocytes suppresses weight regain, whereas inducible depletion of CD7+ monocytes accelerates it. These cells, accumulating metabolic memories via epigenetic adaptations, preferentially migrate to the subcutaneous white adipose tissue (WAT), where they secrete fibrinogen-like protein 2 (FGL2) to activate the protein kinase A (PKA) signaling pathway and facilitate beige fat thermogenesis. Nevertheless, CD7+ monocytes gradually enter a quiescent state after weight loss, accompanied by increased susceptibility to weight regain. Notably, administration of FMS-like tyrosine kinase 3 ligand (FLT3L) remarkably rejuvenates CD7+ monocytes, thus ameliorating rapid weight regain. Together, our findings identify a unique bone marrow-derived metabolic-memory immune cell population that could be targeted to combat obesity.


Assuntos
Medula Óssea , Aumento de Peso , Humanos , Aumento de Peso/fisiologia , Medula Óssea/metabolismo , Obesidade/metabolismo , Redução de Peso , Dieta Redutora , Termogênese/fisiologia , Fibrinogênio
11.
J Clin Endocrinol Metab ; 109(1): 171-182, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37477496

RESUMO

CONTEXT: Primary aldosteronism (PA) is one of the leading causes of secondary hypertension, and its diagnostic subtyping consistently presents a clinical challenge. OBJECTIVE: This study aimed to investigate the potential of 68Ga-Pentixafor positron emission tomography/computed tomography (PET/CT) in PA classification and its applicability in guiding the development of clinical treatment plans by increasing the sample size. METHODS: We prospectively enrolled 120 patients with either PA or nonfunctional adenoma (NFA) for analysis. All patients underwent 68Ga-Pentixafor PET/CT. Of these, 11 patients underwent adrenal venous sampling (AVS), 77 underwent adrenalectomy, 76 received pathological diagnoses, and 71 underwent immunohistochemical detection of aldosterone synthase (CYP11B2). Immunohistochemistry for C-X-C chemokine receptor 4 (CXCR4) was performed in 62 cases. Follow-up was conducted for all patients. RESULTS: Among the 120 patients, 66 were diagnosed with aldosterone-producing adenoma (APA), 33 with idiopathic hyperaldosteronism (IHA), and 21 with NFA. For APA patients, the sensitivity, specificity, and accuracy of visual analysis using 68Ga-Pentixafor PET/CT were 92.40%, 94.40%, and 93.33%, respectively. Furthermore, for APA patients with a nodule greater than 1 cm in diameter, when the maximum standard uptake value was 7.3 or greater, the specificity was 100%; and for APA patients with a nodule less than 1 cm in diameter, 68Ga-Pentixafor PET/CT also exhibited high sensitivity. AVS was successfully performed in 5 patients. Among the 5 patients, the concordance rate between the AVS and 68Ga-Pentixafor PET/CT for PA subtyping was 60%. In the 77 patients who underwent adrenalectomy, 61 PET/CT scans displayed positive lesions, all of which benefited from the surgery. Additionally, the concordance rate between 68Ga-Pentixafor PET/CT imaging and CYP11B2 was 81.69%. CONCLUSION: 68Ga-Pentixafor PET/CT is a reliable and noninvasive functional imaging technique that demonstrates high accuracy in classifying PA and provides valuable guidance for clinical treatment decision-making.


Assuntos
Adenoma , Complexos de Coordenação , Hiperaldosteronismo , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Citocromo P-450 CYP11B2 , Peptídeos Cíclicos , Adenoma/complicações , Hiperaldosteronismo/diagnóstico por imagem , Hiperaldosteronismo/cirurgia , Receptores CXCR4
12.
Nat Commun ; 14(1): 3208, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268694

RESUMO

Brown adipose tissue (BAT)-mediated thermogenesis declines with age. However, the underlying mechanism remains unclear. Here we reveal that bone marrow-derived pro-inflammatory and senescent S100A8+ immune cells, mainly T cells and neutrophils, invade the BAT of male rats and mice during aging. These S100A8+ immune cells, coupled with adipocytes and sympathetic nerves, compromise axonal networks. Mechanistically, these senescent immune cells secrete abundant S100A8 to inhibit adipose RNA-binding motif protein 3 expression. This downregulation results in the dysregulation of axon guidance-related genes, leading to impaired sympathetic innervation and thermogenic function. Xenotransplantation experiments show that human S100A8+ immune cells infiltrate mice BAT and are sufficient to induce aging-like BAT dysfunction. Notably, treatment with S100A8 inhibitor paquinimod rejuvenates BAT axon networks and thermogenic function in aged male mice. Our study suggests that targeting the bone marrow-derived senescent immune cells presents an avenue to improve BAT aging and related metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Termogênese , Masculino , Camundongos , Humanos , Ratos , Animais , Idoso , Tecido Adiposo Marrom/metabolismo , Termogênese/fisiologia , Adiposidade/fisiologia , Obesidade/metabolismo , Envelhecimento/metabolismo , Adipócitos Marrons/metabolismo
13.
Front Endocrinol (Lausanne) ; 14: 1168757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091850

RESUMO

SHR-1222, a novel humanized monoclonal antibody targeting sclerostin, has been shown to induce bone formation and decrease bone resorption at a single dose ranging 50-400 mg in our previous phase 1 trial. This study was a randomized, double-blind, placebo-controlled, dose-escalation phase 1 trial, which further investigated the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of multiple ascending doses of SHR-1222 in women with postmenopausal osteoporosis (POP). A total of 105 women with POP were enrolled and randomly assigned. Twenty-one received placebo and eighty-four received SHR-1222 sequentially (100 mg QM, n=4; 200 or 300 mg QM, n=20; and 400 or 600 mg Q2M, n=20). The most common adverse events included increased blood parathyroid hormone, increased low-density lipoprotein, increased blood alkaline phosphatase, increased blood cholesterol, back pain, and arthralgia, the majority of which were mild in severity without noticeable safety concerns. Serum SHR-1222 exposure (Cmax,ss and AUC0-tau,ss) increased in a greater than dose-proportional manner. Following multiple doses of SHR-1222, the bone formation markers (terminal propeptide of type I procollagen, bone-specific alkaline phosphatase, and osteocalcin) increased in a dose-dependent manner, whereas the bone resorption marker (ß-C-telopeptide) was downregulated. Accordingly, BMD gains in the lumbar spine, total hip, and femoral neck were observed. The maximum BMD increase from baseline at the lumbar spine was detected in the 300 mg QM cohort (14.6% vs. 0.6% in the placebo group on day 169). Six (6/83; 7.2%) subjects developed anti-SHR-1222 antibodies with no discernible effects on PKs, PDs, and safety. Thus, multiple doses of SHR-1222 showed an acceptable safety profile and dose-dependent plasma exposure in women with POP, and could improve their BMD rapidly and prominently by promoting bone formation and inhibiting bone resorption. These findings further support SHR-1222 as a potential alternative agent for the treatment of POP.


Assuntos
Reabsorção Óssea , Osteoporose Pós-Menopausa , Humanos , Feminino , Anticorpos Monoclonais/efeitos adversos , Densidade Óssea , Pós-Menopausa , Fosfatase Alcalina , Osteoporose Pós-Menopausa/tratamento farmacológico , Reabsorção Óssea/induzido quimicamente
14.
EMBO J ; 42(9): e111762, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36943004

RESUMO

Senescence and altered differentiation potential of bone marrow stromal cells (BMSCs) lead to age-related bone loss. As an important posttranscriptional regulatory pathway, alternative splicing (AS) regulates the diversity of gene expression and has been linked to induction of cellular senescence. However, the role of splicing factors in BMSCs during aging remains poorly defined. Herein, we found that the expression of the splicing factor Y-box binding protein 1 (YBX1) in BMSCs decreased with aging in mice and humans. YBX1 deficiency resulted in mis-splicing in genes linked to BMSC osteogenic differentiation and senescence, such as Fn1, Nrp2, Sirt2, Sp7, and Spp1, thus contributing to BMSC senescence and differentiation shift during aging. Deletion of Ybx1 in BMSCs accelerated bone loss in mice, while its overexpression stimulated bone formation. Finally, we identified a small compound, sciadopitysin, which attenuated the degradation of YBX1 and bone loss in old mice. Our study demonstrated that YBX1 governs cell fate of BMSCs via fine control of RNA splicing and provides a potential therapeutic target for age-related osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Camundongos , Animais , Osteogênese/genética , Envelhecimento/metabolismo , Senescência Celular , Diferenciação Celular/genética , Osteoporose/metabolismo , Células da Medula Óssea , Proteína 1 de Ligação a Y-Box/metabolismo
16.
Front Endocrinol (Lausanne) ; 13: 942383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246928

RESUMO

Objective: This study intended to determine the associations between gut microbiota and glucose response in healthy individuals and analyze the connection between the gut microbiome and glucose-metabolism-related parameters. Methods: Fecal bacterial composition and anthropometric, body composition, body fat distribution, and biochemical measures were analyzed. A 75-g oral glucose tolerance test (OGTT) was given to each participant to investigate changes in glucagon-like peptide 1 (GLP-1), insulin, and glucose. The whole body fat and the regions of interest of local body composition were analyzed using dual-energy X-ray absorptiometry (DEXA), and gut microbiota composition was assessed through variable regions (V3-V4) of the bacterial 16s ribosomal RNA gene using high-throughput sequencing techniques. Spearman correlation analysis was used to evaluate the association between gut microbiota and clinical and metabolic changes. Results: The number of operational taxonomic units (OTUs) demonstrated a reduction in the diversity and composition of gut microbiota associated with enhanced adiposity, dyslipidemia, insulin resistance, and hyperglycemia. The alpha diversity revealed that microbiota diversity, richness, and composition were higher in the African group and lower in the Chinese group. Principal coordinates analysis (PCoA) plots of beta diversity showed significant variability in gut microbial community structure between the two groups (p = 0.0009). LEfSe analysis showed that phylum Bacteroidetes was significantly more abundant in the Chinese group, and this group also harbored members of the order Bacteroidales, family Bacteroidaceae, and genus Bacteroides. In contrast, the phylum Verrucomicrobia was significantly more prevalent in the African group (all p < 0.05). Concerning species, metastats analysis revealed 8 species in the Chinese group and 18 species in the African group that were significantly abundant. Spearman's correlation analysis demonstrated that gut microbiota correlated with the factors that related to glucose metabolism. Conclusion: Our data suggest that there is an interaction between gut microbiota, host physiology, and glucometabolic pathways, and this could contribute to adiposity and pathophysiology of hyperlipidemia, insulin resistance, and hyperglycemia. These findings provide an important basis for determining the relation between the gut microbiota and the pathogenesis of various metabolic disorders.


Assuntos
Microbioma Gastrointestinal , Hiperglicemia , Resistência à Insulina , Insulinas , China/epidemiologia , Microbioma Gastrointestinal/genética , Peptídeo 1 Semelhante ao Glucagon , Glucose/metabolismo , Humanos
17.
Cell Death Dis ; 13(10): 904, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302749

RESUMO

Islet ß cell dysfunction and insulin resistance are the main pathogenesis of type 2 diabetes (T2D), but the mechanism remains unclear. Here we identify a rs3819316 C > T mutation in lncRNA Reg1cp mainly expressed in islets associated with an increased risk of T2D. Analyses in 16,113 Chinese adults reveal that Mut-Reg1cp individuals had higher incidence of T2D and presented impaired insulin secretion as well as increased insulin resistance. Mice with islet ß cell specific Mut-Reg1cp knock-in have more severe ß cell dysfunction and insulin resistance. Mass spectrometry assay of proteins after RNA pulldown demonstrate that Mut-Reg1cp directly binds to polypyrimidine tract binding protein 1 (PTBP1), further immunofluorescence staining, western blot analysis, qPCR analysis and glucose stimulated insulin secretion test reveal that Mut-Reg1cp disrupts the stabilization of insulin mRNA by inhibiting the phosphorylation of PTBP1 in ß cells. Furthermore, islet derived exosomes transfer Mut-Reg1cp into peripheral tissue, which then promote insulin resistance by inhibiting AdipoR1 translation and adiponectin signaling. Our findings identify a novel mutation in lncRNA involved in the pathogenesis of T2D, and reveal a new mechanism for the development of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , Ilhotas Pancreáticas , RNA Longo não Codificante , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos
18.
Cell Mol Gastroenterol Hepatol ; 14(6): 1213-1233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36058506

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver-related morbidity and mortality whereas the pathogenic mechanism remains largely elusive. DNA N6-methyladenosine (6mA) modification is a recently identified epigenetic mark indicative of transcription in eukaryotic genomes. Here, we aimed to investigate the role and mechanism of DNA 6mA modification in NAFLD progression. METHODS: Dot blot and immunohistochemistry were used to detect DNA 6mA levels. Liver-specific AlkB homolog 1 (ALKBH1)-knockout mice and mice with ALKBH1 overexpression in liver were subjected to a high-fat diet or methionine choline-deficient diet to evaluate the critical role of ALKBH1-demethylated DNA 6mA modification in the pathogenesis of hepatic steatosis during NAFLD. RNA sequencing and chromatin immunoprecipitation sequencing were performed to investigate molecular mechanisms underlying this process. RESULTS: The DNA 6mA level was increased significantly with hepatic steatosis, while ALKBH1 expression was down-regulated markedly in both mouse and human fatty liver. Deletion of ALKBH1 in hepatocytes increased genomic 6mA levels and accelerated diet-induced hepatic steatosis and metabolic dysfunction. Comprehensive analyses of transcriptome and chromatin immunoprecipitation sequencing data indicated that ALKBH1 directly bound to and exclusively demethylated 6mA levels of genes involved in fatty acid uptake and lipogenesis, leading to reduced hepatic lipid accumulation. Importantly, ALKBH1 overexpression was sufficient to suppress lipid uptake and synthesis, and alleviated diet-induced hepatic steatosis and insulin resistance. CONCLUSIONS: Our findings show an indispensable role of ALKBH1 as an epigenetic suppressor of DNA 6mA in hepatic fatty acid metabolism and offer a potential therapeutic target for NAFLD treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Metabolismo dos Lipídeos , DNA , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos , Homólogo AlkB 1 da Histona H2a Dioxigenase
19.
Cell Metab ; 34(8): 1168-1182.e6, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35705079

RESUMO

Exercise can prevent osteoporosis and improve immune function, but the mechanism remains unclear. Here, we show that exercise promotes reticulocalbin-2 secretion from the bone marrow macrophages to initiate bone marrow fat lipolysis. Given the crucial role of lipolysis in exercise-stimulated osteogenesis and lymphopoiesis, these findings suggest that reticulocalbin-2 is a pivotal regulator of a local adipose-osteogenic/immune axis. Mechanistically, reticulocalbin-2 binds to a functional receptor complex, which is composed of neuronilin-2 and integrin beta-1, to activate a cAMP-PKA signaling pathway that mobilizes bone marrow fat via lipolysis to fuel the differentiation and function of mesenchymal and hematopoietic stem cells. Notably, the administration of recombinant reticulocalbin-2 in tail-suspended and old mice remarkably decreases bone marrow fat accumulation and promotes osteogenesis and lymphopoiesis. These findings identify reticulocalbin-2 as a novel mechanosensitive lipolytic factor in maintaining energy homeostasis in bone resident cells, and it provides a promising target for skeletal and immune health.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Lipólise , Linfopoese , Células-Tronco Mesenquimais/metabolismo , Camundongos
20.
Cell Death Dis ; 13(5): 494, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35610206

RESUMO

A specific bone capillary subtype, namely type H vessels, with high expression of CD31 and endomucin, was shown to couple angiogenesis and osteogenesis recently. The number of type H vessels in bone tissue declines with age, and the underlying mechanism for this reduction is unclear. Here, we report that microRNA-188-3p (miR-188-3p) involves this process. miRNA-188-3p expression is upregulated in skeletal endothelium and negatively regulates the formation of type H vessels during ageing. Mice with depletion of miR-188 showed an alleviated age-related decline in type H vessels. In contrast, endothelial-specific overexpression of miR-188-3p reduced the number of type H vessels, leading to decreased bone mass and delayed bone regeneration. Mechanistically, we found that miR-188 inhibits type H vessel formation by directly targeting integrin ß3 in endothelial cells. Our findings indicate that miR-188-3p is a key regulator of type H vessel formation and may be a potential therapeutic target for preventing bone loss and accelerating bone regeneration.


Assuntos
MicroRNAs , Osteogênese , Envelhecimento/genética , Animais , Células Endoteliais/metabolismo , Endotélio , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Patológica , Osteogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...