Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514756

RESUMO

Localized surface plasmon resonance (LSPR)-based sensors exhibit enormous potential in the areas of medical diagnosis, food safety regulation and environmental monitoring. However, the broadband spectral lineshape of LSPR hampers the observation of wavelength shifts in sensing processes, thus preventing its widespread applications in sensors. Here, we describe an improved plasmonic sensor based on Fano resonances between LSPR and the Rayleigh anomaly (RA) in a metal-insulator-metal (MIM) meta-grating, which is composed of silver nanoshell array, an isolation grating mask and a continuous gold film. The MIM configuration offers more freedom to control the optical properties of LSPR, RA and the Fano resonance between them. Strong couplings between LSPR and RA formed a series of narrowband reflection peaks (with a linewidth of ~20 nm in full width at half maximum (FWHM) and a reflectivity nearing 100%) within an LSPR-based broadband extinction window in the experiment, making the meta-grating promising for applications of high-efficiency reflective filters. A Fano resonance that is well optimized between LSPR and RA by carefully adjusting the angles of incident light can switch such a nano-device to an improved biological/chemical sensor with a figure of merit (FOM) larger than 57 and capability of detecting the local refractive index changes caused by the bonding of target molecules on the surface of the nano-device. The figure of merit of the hybrid sensor in the detection of target molecules is 6 and 15 times higher than that of the simple RA- and LSPR-based sensors, respectively.

2.
Chemosphere ; 289: 133081, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34843838

RESUMO

Engineering α-MnO2 with abundant oxygen vacancies is efficient to enhance its catalytic activity towards toluene oxidation. A simple and facile method was introduced to fabricate oxygen vacancies on α-MnO2 surface by reheating the pre-calcined samples under vacuum condition. The reheat treatment especially at 180 °C is beneficial for the formation of oxygen vacancies on α-MnO2 surface, enhancing the oxidation of toluene. The toluene conversion is up to 100% at 270 °C, which is 30 °C lower than that of α-MnO2 without reheat treatment. The apparent activation energy (16.8 kJ mol-1) of MnO2-180 catalyst is lowest among these catalysts, which is essential for accelerating the oxidation of toluene. In-situ DRIFTS results indicate that the MnO2-180 sample promotes the formation of benzaldehyde and the occurrence of ring-opening reaction, thus effectively improving the catalytic performance for toluene oxidation. A possible catalytic oxidation mechanism of toluene over α-MnO2 catalysts after reheat treatment was proposed.


Assuntos
Compostos de Manganês , Óxidos , Catálise , Oxigênio , Tolueno/análise , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...