Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 9(11): 2096-2107, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38033802

RESUMO

Understanding the solution-state aggregate structure and the consequent hierarchical assembly of conjugated polymers is crucial for controlling multiscale morphologies during solid thin-film deposition and the resultant electronic properties. However, it remains challenging to comprehend detailed solution aggregate structures of conjugated polymers, let alone their chiral assembly due to the complex aggregation behavior. Herein, we present solution-state aggregate structures and their impact on hierarchical chiral helical assembly using an achiral diketopyrrolopyrrole-quaterthiophene (DPP-T4) copolymer and its two close structural analogues wherein the bithiophene is functionalized with methyl groups (DPP-T2M2) or fluorine atoms (DPP-T2F2). Combining in-depth small-angle X-ray scattering analysis with various microscopic solution imaging techniques, we find distinct aggregate in each DPP solution: (i) semicrystalline 1D fiber aggregates of DPP-T2F2 with a strongly bound internal structure, (ii) semicrystalline 1D fiber aggregates of DPP-T2M2 with a weakly bound internal structure, and (iii) highly crystalline 2D sheet aggregates of DPP-T4. These nanoscopic aggregates develop into lyotropic chiral helical liquid crystal (LC) mesophases at high solution concentrations. Intriguingly, the dimensionality of solution aggregates largely modulates hierarchical chiral helical pitches across nanoscopic to micrometer scales, with the more rigid 2D sheet aggregate of DPP-T4 creating much larger pitch length than the more flexible 1D fiber aggregates. Combining relatively small helical pitch with long-range order, the striped twist-bent mesophase of DPP-T2F2 composed of highly ordered, more rigid 1D fiber aggregate exhibits an anisotropic dissymmetry factor (g-factor) as high as 0.09. This study can be a prominent addition to our knowledge on a solution-state hierarchical assembly of conjugated polymers and, in particular, chiral helical assembly of achiral organic semiconductors that can catalyze an emerging field of chiral (opto)electronics.

2.
Angew Chem Int Ed Engl ; 61(49): e202213840, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36219546

RESUMO

Topochemical polymerizations hold the promise of producing high molecular weight and stereoregular single crystalline polymers by first aligning monomers before polymerization. However, monomer modifications often alter the crystal packing and result in non-reactive polymorphs. Here, we report a systematic study on the side chain functionalization of the bis(indandione) derivative system that can be polymerized under visible light. Precisely engineered side chains help organize the monomer crystals in a one-dimensional fashion to maintain the topochemical reactivity. By optimizing the side chain length and end group of monomers, the elastic modulus of the resulting polymer single crystals can also be greatly enhanced. Lastly, using ultrasonication, insoluble polymer single crystals can be processed into free-standing and robust polymer thin films. This work provides new insights on the molecular design of topochemical reactions and paves the way for future applications of this fascinating family of materials.

3.
J Am Chem Soc ; 144(36): 16588-16597, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35994519

RESUMO

Closed-loop circular utilization of plastics is of manifold significance, yet energy-intensive and poorly selective scission of the ubiquitous carbon-carbon (C-C) bonds in contemporary commercial polymers pose tremendous challenges to envisioned recycling and upcycling scenarios. Here, we demonstrate a topochemical approach for creating elongated C-C bonds with a bond length of 1.57∼1.63 Å between repeating units in the solid state with decreased bond dissociation energies. Elongated bonds were introduced between the repeating units of 12 distinct polymers from three classes. In all cases, the materials exhibit rapid depolymerization via breakage of the elongated bond within a desirable temperature range (140∼260 °C) while otherwise remaining remarkably stable under harsh conditions. Furthermore, the topochemically prepared polymers are processable and 3D-printable while maintaining a high depolymerization yield and tunable mechanical properties. These results suggest that the crystalline polymers synthesized from simple photochemistry and without expensive catalysts are promising for practical applications with complete materials' circularity.

4.
J Hepatocell Carcinoma ; 8: 1473-1484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34877267

RESUMO

PURPOSE: The treatment response to initial conventional transarterial chemoembolization (cTACE) is essential for the prognosis of patients with hepatocellular carcinoma (HCC). This study explored and verified the feasibility of machine-learning models based on clinical data and contrast-enhanced computed tomography (CT) image findings to predict early responses of HCC patients after initial cTACE treatment. PATIENTS AND METHODS: Overall, 110 consecutive unresectable HCC patients who were treated with cTACE for the first time were retrospectively enrolled. Clinical data and imaging features based on contrast-enhanced CT were collected for the selection of characteristics. Treatment responses were evaluated based on the modified Response Evaluation Criteria in Solid Tumors (mRECIST) by postoperative CT examination within 2 months after the procedure. Python (version 3.70) was used to develop machine learning models. Least absolute shrinkage and selection operator (LASSO) algorithm was applied to select features with the impact on predicting treatment response after the first TACE procedure. Six machine learning algorithms were used to build predictive models, including XGBoost, decision tree, support vector machine, random forest, k-nearest neighbor, and fully convolutional networks, and their performances were compared using receiver operator characteristic (ROC) curves to determine the best performing model. RESULTS: Following TACE, 31 patients (28.2%) were described as responsive to TACE, while 72 patients (71.8%) were nonresponsive to TACE. Portal vein tumor thrombosis type, albumin level, and distribution of tumors within the liver were selected for predictive model building. Among the models, the RF model showed the best performance, with area under the curve (AUC), accuracy, sensitivity, and specificity of 0.802, 0.784, 0.904, and 0.480, respectively. CONCLUSION: Machine learning models can provide an accurate prediction of the early response of initial TACE treatment for HCC, which can help in individualizing clinical decision-making and modification of further treatment strategies for patients with unresectable HCC.

5.
Nat Mater ; 20(4): 518-524, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398117

RESUMO

It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl3 or NOBF4 increase, and Hall effect measurements for the same p-doped polymers reveal that electrons become the dominant delocalized charge carriers. Ultraviolet and inverse photoelectron spectroscopy measurements show that doping with oxidizing agents results in elimination of the transport gap at high doping concentrations. This approach of heavy p-type doping is demonstrated to provide a promising route to high-performance n-type organic thermoelectric materials.

6.
ACS Macro Lett ; 10(8): 1061-1067, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35549113

RESUMO

Organic electrochemical transistors (OECTs) are oft-used for bioelectronic applications, and a variety of OECT channel materials have been developed in recent years. However, the majority of these materials are still limited by long-term performance and stability challenges. To resolve these issues, we implemented a next-generation design of polymers for OECTs. Specifically, diketopyrrolopyrrole (DPP) building blocks were copolymerized with propylene dioxythiophene-based (Pro-based) monomers to create a donor-acceptor-type conjugated polymer (PProDOT-DPP). These PProDOT-DPP macromolecules were synthesized using a straightforward direct arylation polymerization synthetic route. The PProDOT-DPP polymer thin film exhibited excellent electrochemical response, low oxidation potential, and high crystallinity, as evidenced by spectroelectrochemical measurements and grazing incidence wide-angle X-ray scattering measurements. Thus, the resultant polymer thin films had high charge mobility and volumetric capacitance values (i.e., µC* as high as 310 F cm-1 V-1 s-1) when they were used as the active layer materials in OECT devices, which places PProDOT-DPP among the highest performing accumulation-mode OECT polymers reported to date. The performance of the PProDOT-DPP thin films was also retained for 100 cycles and over 2000 s of ON-OFF cycling, indicating the robust stability of the materials. Therefore, this effort provides a clear roadmap for the design of electrochemically active macromolecules for accumulation-mode OECTs, where crystalline acceptor cores are incorporated into an all-donor polymer. We anticipate that this will ultimately inspire future polymer designs to enable OECTs with both high electrical performance and operational stability.


Assuntos
Polímeros , Transistores Eletrônicos , Polimerização , Polímeros/química
7.
Small ; 16(19): e2001215, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32307923

RESUMO

Development of molecular probes holds great promise for early diagnosis of aggressive prostate cancer. Here, 2-[3-(1,3-dicarboxypropyl) ureido] pentanedioic acid (DUPA)-conjugated ligand and bis-isoindigo-based polymer (BTII) are synthesized to formulate semiconducting polymer nanoparticles (BTII-DUPA SPN) as a prostate-specific membrane antigen (PSMA)-targeted probe for prostate cancer imaging in the NIR-II window. Insights into the interaction of the imaging probes with the biological targets from single cell to whole organ are obtained by transient absorption (TA) microscopy and photoacoustic (PA) tomography. At single-cell level, TA microscopy reveals the targeting efficiency, kinetics, and specificity of BTII-DUPA SPN to PSMA-positive prostate cancer. At organ level, PA tomographic imaging of BTII-DUPA SPN in the NIR-II window demonstrates superior imaging depth and contrast. By intravenous administration, BTII-DUPA SPN demonstrates selective accumulation and retention in the PSMA-positive tumor, allowing noninvasive PA detection of PSMA overexpressing prostate tumors in vivo. The distribution of nanoparticles inside the tumor tissue is further analyzed through TA microscopy. These results collectively demonstrate BTII-DUPA SPN as a promising probe for prostate cancer diagnosis by PA tomography.


Assuntos
Nanopartículas , Neoplasias da Próstata , Linhagem Celular Tumoral , Diagnóstico por Imagem , Humanos , Masculino , Polímeros , Neoplasias da Próstata/diagnóstico por imagem
8.
Sci Adv ; 5(8): eaaw7757, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31448330

RESUMO

Intrachain charge transport is unique to conjugated polymers distinct from inorganic and small molecular semiconductors and is key to achieving high-performance organic electronics. Polymer backbone planarity and thin film morphology sensitively modulate intrachain charge transport. However, simple, generic nonsynthetic approaches for tuning backbone planarity and the ensuing multiscale assembly process do not exist. We first demonstrate that printing flow is capable of planarizing the originally twisted polymer backbone to substantially increase the conjugation length. This conformation change leads to a marked morphological transition from chiral, twinned domains to achiral, highly aligned morphology, hence a fourfold increase in charge carrier mobilities. We found a surprising mechanism that flow extinguishes a lyotropic twist-bend mesophase upon backbone planarization, leading to the observed morphology and electronic structure transitions.

9.
Nanoscale ; 11(15): 7358-7363, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30938719

RESUMO

We report a reversible photo-induced doping effect in two-dimensional (2D) tungsten diselenide (WSe2) field effect transistors on hexagonal boron nitride (h-BN) substrates under low-intensity visible light illumination (∼10 nW µm-2). Our experimental results have shown that this reversible doping process is mainly attributed to two types of defects in h-BN substrates. Moreover, the photo-doped WSe2 transistors can be stable for more than one week in a dark environment and maintain the high on/off ratio (108) and carrier mobility, since there are no additional impurities involved during the photo-induced doping process to increase the columbic scattering in the conducting channel. These fundamental studies not only provide an accessible strategy to control the charge doping level and then to achieve a writing/erasing process in 2D transistors, but also shed light on the defect states and interfaces in 2D materials.

10.
Science ; 362(6419): 1131-1134, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30523104

RESUMO

Although high-temperature operation (i.e., beyond 150°C) is of great interest for many electronics applications, achieving stable carrier mobilities for organic semiconductors at elevated temperatures is fundamentally challenging. We report a general strategy to make thermally stable high-temperature semiconducting polymer blends, composed of interpenetrating semicrystalline conjugated polymers and high glass-transition temperature insulating matrices. When properly engineered, such polymer blends display a temperature-insensitive charge transport behavior with hole mobility exceeding 2.0 cm2/V·s across a wide temperature range from room temperature up to 220°C in thin-film transistors.

11.
J Am Chem Soc ; 140(11): 4110-4118, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29488760

RESUMO

Azoarenes are valuable chromophores that have been extensively incorporated as photoswitchable elements in molecular machines and biologically active compounds. Here, we report a catalytic nitrene dimerization reaction that provides access to structurally and electronically diverse azoarenes. The reaction utilizes aryl azides as nitrene precursors and generates only gaseous N2 as a byproduct. By circumventing the use of a stoichiometric redox reagent, a broad range of organic functional groups are tolerated, and common byproducts of current methods are avoided. A catalyst featuring a Ni-Ni bond is found to be uniquely effective relative to those containing only a single Ni center. The mechanistic origins of this nuclearity effect are described.

12.
Langmuir ; 34(3): 1109-1122, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28968120

RESUMO

It is well-known that substrate surface properties have a profound impact on the morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution-coated semiconducting polymers, as the substrate-directed thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We perform in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing donor-acceptor (D-A) conjugated polymers. We find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering, and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate leads to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step toward establishing design rules and understanding the critical role of substrates in determining morphology of solution-coated thin films.

13.
J Am Chem Soc ; 137(50): 15947-56, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26619351

RESUMO

Molecular packing in organic single crystals greatly influences their charge transport properties but can hardly be predicted and designed because of the complex intermolecular interactions. In this work, we have realized systematic fine-tuning of the single-crystal molecular packing of five benzodifurandione-based oligo(p-phenylenevinylene) (BDOPV)-based small molecules through incorporation of electronegative fluorine atoms on the BDOPV backbone. While these molecules all exhibit similar column stacking configurations in their single crystals, the intermolecular displacements and distances can be substantially modified by tuning of the amounts and/or the positions of the substituent fluorine atoms. Density functional theory calculations showed that the subtle differences in charge distribution or electrostatic potential induced by different fluorine substitutions play an important role in regulating the molecular packing of the BDOPV compounds. Consequently, the electronic couplings for electron transfer can vary from 71 meV in a slipped stack to 201 meV in a nearly cofacial antiparallel stack, leading to an increase in the electron mobility of the BDOPV derivatives from 2.6 to 12.6 cm(2) V(-1) s(-1). The electron mobility of the five molecules did not show a good correlation with the LUMO levels, indicating that the distinct difference in charge transport properties is a result of the molecular packing. Our work not only provides a series of high-electron-mobility organic semiconductors but also demonstrates that fluorination is an effective approach for fine-tuning of single-crystal packing modes beyond simply lowering the molecular energy levels.

14.
Adv Mater ; 27(48): 8051-5, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26501491

RESUMO

A strong, electron-deficient small molecule, F4 -BDOPV, has a lowest unoccupied molecular orbital (LUMO) level down to -4.44 eV and exhibits cofacial packing in single crystals. These features provide F4 -BDOPV with good ambient stability and large charge-transfer integrals for electrons, leading to a high electron mobility of up to 12.6 cm(2) V(-1) s(-1) in air.


Assuntos
Ar , Elétrons , Polivinil/química , Transistores Eletrônicos , Transporte de Elétrons , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...