Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 222, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418975

RESUMO

Shepherd's crook (Geodorum) is a genus of protected orchids that are valuable both medicinally and ornamentally. Geodorum eulophioides (GE) is an endangered and narrowly distributed species, and Geodorum densiflorum (GD) and Geodorum attenuatum (GA) are widespread species. The growth of orchids depend on microorganisms. However, there are few studies on the microbial structure in Geodorum, and little is known about the roles of microorganisms in the endangered mechanism of G. eulophioides. This study analyzed the structure and composition of bacterial and fungal communities in the roots and rhizosphere soil of GE, GD, and GA. The results showed that Delftia, Bordetella and norank_f_Xanthobacteraceae were the dominant bacteria in the roots of Geodorum, while norank_f_Xanthobacteraceae, Gaiella and norank_f_norank_o_Gaiellales were the dominant bacteria in the rhizosphere soil of Geodorum. In the roots, the proportion of Mycobacterium in GD_roadside was higher than that in GD_understory, on the contrary, the proportion of Fusarium, Delftia and Bordetella in GD_roadside was lower than that in GD_understory. Compared with the GD_understory, the roots of GD_roadside had lower microbial diversity. In the endangered species GE, Russula was the primary fungus in the roots and rhizosphere soil, with fungal diversity lower than in the more widespread species. Among the widespread species, the dominant fungal genera in the roots and rhizosphere soil were Neocosmospora, Fusarium and Coprinopsis. This study enhances our understanding of microbial composition and diversity, providing fundamental information for future research on microbial contributions to plant growth and ecosystem function in Geodorum.


Assuntos
Agaricales , Fusarium , Rizosfera , Solo/química , Ecossistema , Fungos/genética , Microbiologia do Solo , Raízes de Plantas/microbiologia , Bactérias/genética
2.
Genes (Basel) ; 14(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37761889

RESUMO

Habenaria dentata has medicinal and ornamental value, but the number of wild populations is decreasing dramatically. Thus, conducting research on its genetic diversity and structure is necessary to provide a basis for its conservation. This study aimed to explore the genetic diversity of the wild plant H. dentata and protect and optimize its wild resources. The genetic diversity of 133 samples from six wild populations of H. dentata was analyzed using Inter Simple Sequence Repeat molecular markers to provide a scientific basis for the screening of improved germplasm resources. The results showed that the average number of alleles was 1.765, the average number of effective alleles was 1.424, the average Nei's gene diversity index was 0.252, the average Shannon diversity index was 0.381, and the average percentage of polymorphic loci was 76.499%. The variation within the populations was 77.34%, and the variation between the populations was 22.66%. The gene flow was 1.705, which was greater than 1. The results of the cluster analysis showed that the six populations were mainly divided into four clusters and were not classified according to their geographical location. There was no significant correlation between the geographical location and genetic distance between the populations (r = 0.557, p > 0.05). The genetic diversity of H. dentata is high. Among the six wild populations, the genetic diversity of the Mulun population was the highest and this population can be used as a key protection unit. The study on the genetic diversity of H. dentata can not only reveal the reasons for the decrease in the number of individuals in the population to a certain extent, and put forward the protection strategy, but also provide a scientific basis for the breeding of excellent seed resources.


Assuntos
Variação Genética , Orchidaceae , Humanos , Variação Genética/genética , Melhoramento Vegetal , Repetições de Microssatélites/genética , Orchidaceae/genética , Análise por Conglomerados
3.
BMC Plant Biol ; 23(1): 317, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316828

RESUMO

BACKGROUND: Understanding genetic diversity is a core issue in conservation genetics. However, previous genetic diversity evaluations of narrowly distributed species have rarely used closely related widespread species as a reference. Furthermore, identifying natural hybridization signals between narrowly and widely distributed sympatric species is of great importance for the development of species conservation programs. METHODS: In this study, population genotyping by sequencing (GBS) was performed for a narrowly distributed species, Geodorum eulophioides (endemic and endangered in Southwest China), and a widespread species, G. densiflorum. A total of 18,490 high-quality single nucleotide polymorphisms (SNPs) were identified at the whole-genome level. RESULTS: The results showed that the nucleotide diversity and heterozygosity of G. eulophioides were significantly higher than those of G. densiflorum, confirming that narrowly distributed species can still preserve high genetic diversity. Consistent with taxonomic boundaries, all sampled individuals from the two species were divided into two genetic clusters and showed high genetic differentiation between species. However, in a sympatric population, a few G. eulophioides individuals were detected with genetic components from G. densiflorum, suggesting potential interspecific natural hybridization. This hypothesis was supported by Treemix analysis and hand-hybridization trials. Invasion of the habitat of G. eulophioides invasion by G. densiflorum under anthropogenic disturbance may be the main factor causing interspecific hybridization. CONCLUSIONS: Therefore, reducing or avoiding habitat disturbance is a key measure to protect the G. eulophioides populations. This study provides valuable information for future conservation programs for narrowly distributed species.


Assuntos
Genômica , Orchidaceae , Hibridização Genética , Hibridização de Ácido Nucleico , China , Polimorfismo de Nucleotídeo Único/genética
4.
Mitochondrial DNA B Resour ; 7(6): 969-970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712546

RESUMO

Habenaria dentata is a rare species with high ornamental value in China. In this study, we report the complete chloroplast (cp) genome of H. dentata using the Illumina sequencing data. The total genome of H. dentata is 153,682 bp in length and the GC content is 36.62%, with a pair of inverted repeats (IRs) regions of 26,339 bp each, a large single-copy (LSC) region of 83,963 bp and a small single-copy (SSC) region of 17,041 bp. The cp genome encoded 133 genes, including 87 protein-coding genes (PCG), eight rRNA genes, and 38 tRNA genes. The maximum-likelihood phylogenetic analysis based on 12 cp genomes showed that H. dentata was sister to Habenaria chejuensis and Habenaria ciliolaris. This work will be valuable for genetic and phylogenetic studies on H. dentata.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...