Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0296689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277380

RESUMO

The frozen ground robot can be widely and prospectively applied in plentiful fields, such as military rescue and planet exploration. Based on the energy-saving, load-bearing, and attachment functions of reindeer hooves, we studied the kinematics of reindeer feet and designed a biomimetic energy-saving attachment mechanical foot (mechanical foot I) and two contrast mechanical feet (mechanical feet II and III). The energy-saving and load-bearing performances of the biomimetic mechanical foot were tested on a motion mechanics platform, which revealed this mechanical foot was adaptive to three types of ground (frozen ground, ice, and water ice lunar soil). Mechanical foot I possesses the functions of elastic energy storage and power consumption reduction, and its power range is from -2.77 to -27.85 W. Compared with mechanical foot III, the load-bearing ability of mechanical foot I was improved by the dewclaws, and the peak forces in the X, Y, and Z directions increased by about 2.54, 1.25 and 1.31 times, respectively. When mechanical foot I acted with more- smooth surface, the joint range of motion (ROM) increased, changes of the three-directional force at the foot junction decreased. The forces were the lowest on ice among the three types of ground, the X-, Y- and Z-directional changes were about 62.96, 83.7, and 319.85 N respectively, and the ROMs for the ankle joint and metatarsophalangeal joint of mechanical foot I were about 17.93° and 16.10°, respectively. This study revealed the active adaptation mechanism between the biomimetic mechanical foot and ice or frozen ground, and thus theoretically underlies research on the biomimetic mechanical foot.


Assuntos
Gelo , Rena , Animais , Biomimética , , Articulação do Tornozelo , Suporte de Carga , Fenômenos Biomecânicos , Marcha
2.
Biomimetics (Basel) ; 8(8)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38132539

RESUMO

The attachment performances of mechanical feet are significant in improving the trafficability and mobility of robots on the extreme ground. In the future, frozen-ground robots can be used to replace human soldiers in scouting and deep space exploration. In this study, the influence factors on the attachment function of the bionic feet were analyzed. Soft frozen soil and tight frozen soil close to natural frozen soil were prepared, and the friction between ungula and frozen soil ground was simulated together with the plantar pressures of reindeer under trotting. The major attachment parts were the ungula cusp, outer edges, and ungula capsules, and the stress on the ungula was mainly 4.56-24.72 MPa. According to the microstructures of plantar fur and ungula, the corresponding ratio of the rib width and length was 0.65:1, and the corresponding ratio of the rib width and distance was 3:1. In addition, the scales of the plantar fur were very tightly arranged and had large ripples. Based on typical curves, an ungula capsule-curved surface, and a nonsmooth plantar fur surface, four types of bionic feet and the corresponding ordinary multidamboard foot were designed. On the frozen soil, the bionic foot with ribs and an ungula capsule showed the best attachment performance. Compared with the multidamboard foot, the dynamic coefficient of friction of the bionic foot with ribs and ungula capsules increased by 11.43-31.75%. The attachment mechanism of the bionic feet is as follows: under the action of pressure, the fine patterns of the bionic convex-crown generate friction with the nonsmooth structure of the frozen soil surface, which improves the attachment performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA