Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Oral Sci ; 16(1): 39, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740741

RESUMO

The aim of this study was to explore the impact of chronic apical periodontitis (CAP) on atherosclerosis in apoE-/- mice fed high-fat diet (HFD). This investigation focused on the gut microbiota, metabolites, and intestinal barrier function to uncover potential links between oral health and cardiovascular disease (CVD). In this study, CAP was shown to exacerbate atherosclerosis in HFD-fed apoE-/- mice, as evidenced by the increase in plaque size and volume in the aortic walls observed via Oil Red O staining. 16S rRNA sequencing revealed significant alterations in the gut microbiota, with harmful bacterial species thriving while beneficial species declining. Metabolomic profiling indicated disruptions in lipid metabolism and primary bile acid synthesis, leading to elevated levels of taurochenodeoxycholic acid (TCDCA), taurocholic acid (TCA), and tauroursodeoxycholic acid (TDCA). These metabolic shifts may contribute to atherosclerosis development. Furthermore, impaired intestinal barrier function, characterized by reduced mucin expression and disrupted tight junction proteins, was observed. The increased intestinal permeability observed was positively correlated with the severity of atherosclerotic lesions, highlighting the importance of the intestinal barrier in cardiovascular health. In conclusion, this research underscores the intricate interplay among oral health, gut microbiota composition, metabolite profiles, and CVD incidence. These findings emphasize the importance of maintaining good oral hygiene as a potential preventive measure against cardiovascular issues, as well as the need for further investigations into the intricate mechanisms linking oral health, gut microbiota, and metabolic pathways in CVD development.


Assuntos
Aterosclerose , Dieta Hiperlipídica , Disbiose , Microbioma Gastrointestinal , Animais , Dieta Hiperlipídica/efeitos adversos , Aterosclerose/metabolismo , Camundongos , Masculino , Periodontite Periapical/metabolismo , Periodontite Periapical/microbiologia , Apolipoproteínas E/metabolismo , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S
2.
FASEB J ; 37(1): e22697, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527387

RESUMO

The properties and functions of BMSCs were altered by the diabetic microenvironment, and its mechanism was not very clear. In recent years, the regulation of the function of BMSCs by microRNA has become a research hotspot, meanwhile, HOX genes also have been focused on and involved in multiple functions of stem cells. In this study, we investigated the role of miR-139-5p in diabetes-induced BMSC impairment. Since HOXA9 may be a target gene of miR-139-5p, we speculated that miR-139-5p/HOXA9 might be involved in regulating the biological characteristics and the function of BMSCs in diabetes. We demonstrated that the miR-139-5p expression was increased in BMSCs derived from STZ-induced diabetic rats. MiR-139-5p mimics were able to inhibit cell proliferation, and migration and promoted senescence and apoptosis in vitro. MiR-139-5p induced the down-regulated expression of HOXA9 and c-Fos in BMSCs derived from normal rats. Moreover, miR-139-5p inhibitors reversed the tendency in diabetic-derived BMSCs. Further, gain-and-loss function experiments indicated that miR-139-5p regulated the functions of BMSCs by targeting HOXA9 and c-Fos. In vivo wound model experiments showed that the downregulation of miR-139-5p further promoted the epithelialization and angiogenesis of diabetic BMSC-mediated skin. In conclusion, induction of miR-139-5p upregulation mediated the impairment of BMSCs through the HOXA9/c-Fos pathway in diabetic rats. Therefore, miR-139-5p/HOXA9 might be an important therapeutic target in treating diabetic BMSCs and diabetic complications in the future.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , MicroRNAs , Ratos , Animais , Células-Tronco Mesenquimais/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Regulação para Baixo
3.
Diabet Med ; 40(4): e15026, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36510823

RESUMO

BACKGROUND: Oxidative stress is recognized as a key factor in the induction of endothelial dysfunction in diabetes. However, the specific mechanisms have not been fully elucidated. We herein hypothesized that ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) might have a role in oxidative stress-induced endothelial cell (EC) apoptosis in diabetes. METHODS: Western blot, qPCR, wound healing assay, apoptosis assay, reactive oxygen species (ROS) detection, dual-luciferase reporter assay, methylation-specific PCR, bisulfite sequencing PCR and chromatin immunoprecipitation assay were performed. RESULTS: UHRF1 expression levels were significantly decreased in endothelial colony-forming cells derived from peripheral blood of participants with type 2 diabetes compared with individuals without diabetes. ECs treated with high glucose, palmitate or hydrogen peroxide in vitro also exhibited decreased UHRF1 protein levels. Silencing of UHRF1 led to decreased migration ability and increased apoptosis and ROS production in ECs, which might be related to impaired Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2)/haeme oxygenase-1 pathway. Mechanistically, UHRF1 is closely implicated in epigenetic regulation of chromatin modification status at KEAP1 genomic locus via histone acetylation. NRF2 down-regulation in turn inhibits UHRF1 protein level, which might be due to increased ROS generation. CONCLUSION: Diabetes-induced oxidative stress can mediate down-regulation of UHRF1, which enhances ROS production by regulating KEAP1/p-NRF2 pathway through histone acetylation and might also form a self-perpetuating feedback loop with KEAP1/p-NRF2 to further promote oxidative stress-induced apoptosis of ECs in diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Fator 2 Relacionado a NF-E2 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Baixo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Estresse Oxidativo , Apoptose , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Int Endod J ; 56(1): 53-68, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36208054

RESUMO

AIM: There are growing evidences linking chronic apical periodontitis (CAP) to atherosclerosis. Gut microbiota is found to be involved in the development of atherosclerosis. Recent studies have shown that CAP could change the diversity and composition of the gut microbiota. It was therefore, we hypothesized that gut microbiota and its metabolites could mediate the impact of CAP on atherosclerosis. METHODOLOGY: Twenty-four 5-week-old lipoprotein E knockout (apoE-/- ) mice were randomly divided into four groups: the CAP group, Con group, Co-CAP (cohoused with CAP) and Co-Con (cohoused with Con) group. In the CAP group, sterile cotton wool containing P. gingivalis was placed into the exposed pulp chamber, followed by coronal resin-based composite restoration of the bilateral maxillary first and second molars. In the Con group, a sham operation was performed. Biweekly, mice in the CAP group were anaesthetised to check the sealing of coronal access. Meanwhile, the animals in the Con group were anaesthetised. The cohousing approach was used to introduce gut microbiota from the CAP and Con groups into the Co-CAP and Co-Con groups, respectively. Alterations in the abundance and diversity of the gut microbiota were detected using 16S rRNA sequencing, Oil-red O staining was used to demonstrate the extent of lesions, and serum levels of trimethylamine N-oxide (TMAO), and immunohistochemistry of flavin-containing monooxygenase 3 (FMO3) in liver were used to assess TMAO-related metabolic alterations. RESULTS: Alterations of alpha and beta diversity were shown both in the CAP and the Co-CAP groups. Moreover, the percentage of atherosclerotic lesion area increased in the CAP and Co-CAP groups (p < .05). Linear discriminant analysis effect size (LEfSe) at the family level found the increases of Lachnospiraceae and Ruminococcaceae (p < .05), which were positively correlated with serum TMAO levels (p < .05). In the redundancy analysis technique (RDA), serum levels of TMAO were positively associated with the atherosclerotic lesions. Co-occurrence analysis revealed that the relative abundances of Lachnospiraceae and Porphyromonadacae were positively correlated with both the percentage of lesion area and TMAO level (p < .05). CONCLUSION: Thus, within the limitations of this study, the data suggest that the gut microbiota can mediate the effects of CAP on atherosclerosis.


Assuntos
Apolipoproteínas , Dente Molar , Camundongos , Animais , RNA Ribossômico 16S
5.
Front Bioeng Biotechnol ; 10: 794037, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350177

RESUMO

Stem cells and progenitor cells have been identified as potential new therapeutic options for severe limb ischemia to induce angiogenesis, and hyaluronic acid (HA) is commonly applied as a biomaterial in tissue engineering. However, the efficiency of HA combined with human umbilical cord blood-derived endothelial colony forming cells (ECFCs) and human umbilical-derived mesenchymal stem cells (MSCs) on angiogenesis is unclear. In the present study, we showed that HA promoted angiogenesis induced by MSCs-ECFCs in Matrigel plugs and promoted blood perfusion of murine ischemic muscles. Laser confocal microscopy revealed that human-derived cells grew into the host vasculature and formed connections, as shown by mouse-specific CD31+/human-specific CD31+ double staining. In vitro assays revealed that HA supported cell proliferation and migration, enhanced CD44 expression and reduced microRNA (miR)-139-5p expression. Further analysis revealed that miR-139-5p expression was negatively regulated by CD44 in ECFCs. Flow cytometry assays showed that HA increased CD31 positive cells proportion in MSC-ECFC and could be reversed by miR-139-5p mimics transfection. Moreover, the improvement of MSC-ECFC proliferation and migration induced by HA could be blocked by upregulation of miR-139-5p expression. In conclusion, HA facilitates angiogenesis of MSCs-ECFCs, and this positive effect be associated with activation of the CD44/miR-139-5p pathway, providing a promising strategy for improving severe limb ischemia.

6.
Int Endod J ; 55(2): 152-163, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34714545

RESUMO

AIM: To investigate the impact of chronic apical periodontitis (CAP) on atherosclerosis and gut microbiota by establishing a Porphyromonas gingivalis (P. gingivalis)-induced CAP in an apolipoprotein E-deficient (apoE-/- ) mice model. METHODOLOGY: Twenty-eight male apoE-/- mice were divided into two groups with 14 in each: CAP group and control group. In the CAP group, sterile cotton wool containing 108 colony-forming units of P. gingivalis was placed into the pulp chamber after pulp exposure followed by coronal resin filling in bilateral maxillary first and second molars. The mice were fed with a chow diet to induce atherosclerosis. Animals were euthanized 16 weeks after the operation, and the periapical lesions of bilateral maxillary first and second molars were assessed by micro-CT. After collection of aortic arches, atherosclerotic lesions were measured by Oil Red O staining. Serum levels of high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TG) were measured. Stools were collected to detect alterations in gut microbiota by 16S rRNA gene sequencing. Independent samples t-test was used to calculate the difference between the two groups. RESULTS: CAP was observed in 98.2% of molars. A significant increase in atherosclerotic plaque formation in the aortic arches was found in the CAP groups (CAP: 2.001% ± 0.27%, control: 0.927% ± 0.22%, p = .005). No significant difference was observed between sevum level of HDL-C (CAP: 2.295 ± 0.31 mmol/L, Control: 3.037 ± 0.55 mmol/L, p = .264) or LDL-C (CAP: 17.066 ± 3.95 mmol/L, Control: 10.948 ± 1.69 mmol/L, p = .177) in CAP group and Control group. There were no significant differences in TG (CAP: 1.076 ± 0.08 mmol/L, control: 1.034 ± 0.13 mmol/L, p = .794) or TC (CAP: 6.372 ± 0.98 mmol/L, control: 6.679 ± 0.75 mmol/L, p = .72) levels between the two groups (p > .05). The alpha diversity was elevated in the CAP group. In terms of beta diversity, the CAP and control groups were clearly distinguished by the microbial community. CONCLUSION: In a mouse experimental model, pulp infection with P. gingivalis -induced CAP, thus aggravating the development of atherosclerosis. Meanwhile, CAP increased alpha diversity and altered the beta diversity of the gut microbiota.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Periodontite Periapical , Animais , Aterosclerose/complicações , Masculino , Camundongos , Camundongos Knockout para ApoE , Periodontite Periapical/complicações , RNA Ribossômico 16S
7.
Caries Res ; 55(3): 205-214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34010838

RESUMO

It has been suggested that green tea-derived epigallocatechin gallate (EGCG), which has antimicrobial properties, might help prevent dental caries. However, the detailed properties of EGCG remain unclear. In this study, the antimicrobial properties of EGCG were evaluated by examining its bactericidal activity, its inhibitory effects against bacterial growth, acid production, acidic end-product formation, and sugar uptake (phosphoenolpyruvate-dependent phosphotransferase system, PEP-PTS activity), and its effects on bacterial aggregation, using monocultured planktonic cells of Streptococcus mutans and non-mutans streptococci. Coincubating S. mutans with EGCG (1 mg/mL) for 4 h had no bactericidal effects, while it decreased the growth and acid production of S. mutans by inhibiting the activity of the PEP-PTS. EGCG (2 mg/mL) caused rapid bacterial cell aggregation and had reduced the optical density of S. mutans cell suspension by 86.7% at pH 7.0 and 90.7% at pH 5.5 after 2 h. EGCG also reduced the acid production of non-mutans streptococci, including S. sanguinis, S. gordonii, and S. salivarius, and promoted the aggregation of these non-mutans streptococci. Furthermore, these antimicrobial effects of short-term EGCG treatment persisted in the presence of saliva. These results suggest that EGCG might have short-term antibacterial effects on caries-associated streptococci in the oral cavity.


Assuntos
Catequina , Cárie Dentária , Biofilmes , Catequina/análogos & derivados , Catequina/farmacologia , Cárie Dentária/prevenção & controle , Humanos , Streptococcus mutans , Chá
8.
Aging (Albany NY) ; 13(1): 1186-1211, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33293476

RESUMO

Dysfunction of endothelial cells (ECs) and their progenitor cells is an important feature of diabetic vascular disease. MicroRNA (miR)-139-5p is involved in inhibiting the metastasis and progression of diverse malignancies. However, the role of miR-139-5p in ECs still remains unclarified. Here we demonstrated that miR-139-5p expression was elevated in endothelial colony-forming cells (ECFCs) isolated from patients with diabetes, ECs derived from the aorta of diabetic rodents, and human umbilical vein endothelial cells (HUVECs) cultured in high glucose media. MiR-139-5p mimics inhibited tube formation, migration, proliferation, and down-regulated expression of c-jun, vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF)-B, in ECFCs and HUVECs, respectively; moreover, miR-139-5p inhibitors reversed the tendency. Further, gain- and-loss function experiments and ChIP assay indicated that miR-139-5p regulate functions of ECFCs by targeting c-jun-VEGF/PDGF-B pathway. In vivo experiments (Matrigel plug assay and hindlimb ischemia model) showed that miR-139-5p downregulation further promoted ECFC-mediated angiogenesis and blood perfusion. In conclusion, diabetes-mediated high miR-139-5p expression inhibits the c-jun-VEGF/PDGF-B pathway, thus decreasing ECFCs migration, tube formation and proliferation, which subsequently reduces ECs survival. Therefore, miR-139-5p might be an important therapeutic target in the treatment of diabetic vasculopathy in the future.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Angiopatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Neovascularização Fisiológica/fisiologia , Adulto , Animais , Aorta/citologia , Estudos de Casos e Controles , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Stem Cells Int ; 2020: 8863649, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061991

RESUMO

BACKGROUND: This study is aimed at investigating the effect of combined transplantation of umbilical cord mesenchymal stem cells (UCMSCs) and umbilical cord blood-derived endothelial colony-forming cells (ECFCs) on diabetic foot ulcer healing and at providing a novel therapy for chronic diabetic foot ulcer. METHODS: We reported the treatment of refractory diabetic foot ulcers in twelve patients. Among them, five patients had two or more wounds; thus, one wound in the same patient was treated with cell injection, and other wounds were regarded as self-controls. The remaining seven patients had only one wound; therefore, the difference between the area of wound before and after treatment was estimated. The UCMSCs and ECFCs were injected into the wound along with topically applied hyaluronic acid (HA). RESULTS: In this report, we compared the healing rate of multiple separate wounds in the same foot of the same patient: one treated with cell injection combined with topically applied HA-based hydrogel and was later covered by the hydrocolloid dressings, while the self-control wounds were only treated with conventional therapy and covered by the hydrocolloid dressings. The wound underwent cell injection showed accelerated healing in comparison to control wound within the first week after treatment. In other diabetic patients with only one refractory wound, the healing rate after cell transplantation was significantly faster than that before injection. Two large wounds healed without needing skin grafts after combination therapy of cell injection and HA. After four weeks of combination treatment, wound closure was reached in six patients, and the wounds of the other six patients were significantly reduced in size. CONCLUSIONS: Our study suggests that the combination of UCMSCs, ECFCs, and HA can safely synergize the accelerated healing of refractory diabetic foot ulcers.

10.
Stem Cells Int ; 2020: 7430968, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399050

RESUMO

OBJECTIVE: Mesenchymal stem cells (MSCs) are considered a promising therapy for wound healing. Here, we explored the role of c-Jun in diabetic wound healing using human umbilical cord-derived MSCs (hUC-MSCs). METHODS: Freshly isolated hUC-MSCs were subjected to extensive in vitro subcultivation. The cell proliferative and migratory capacities were assessed by the Cell Counting Kit-8 and scratch assays, respectively. c-Jun expression was evaluated by RT-PCR and western blot analysis. The function of c-Jun was investigated with lentivirus transduction-based gene silencing and overexpression. Diabetes mellitus was induced in SD rats on a high-glucose/fat diet by streptozocin administration. Wounds were created on the dorsal skin. The effects of c-Jun silencing and overexpression on wound closure by hUC-MSCs were examined. Reepithelialization and angiogenesis were assessed by histological and immunohistochemical analysis, respectively. Platelet-derived growth factor A (PDGFA), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) levels were determined by western blot analysis. RESULTS: hUC-MSCs showed gradually decreased cell proliferation, migration, and c-Jun expression during subcultivation. c-Jun silencing inhibited cell proliferation and migration, while c-Jun overexpression enhanced proliferation but not migration. Compared with untransduced hUC-MSCs, local subcutaneous injection of c-Jun-overexpressing hUC-MSCs accelerated wound closure, enhanced angiogenesis and reepithelialization at the wound bed, and increased PDGFA and HGF levels in wound tissues. CONCLUSION: c-Jun overexpression promoted hUC-MSC proliferation and migration in vitro and accelerated diabetic wound closure, reepithelization, and angiogenesis by hUC-MSCs in vivo. These beneficial effects of c-Jun overexpression in diabetic wound healing by hUC-MSCs were at least partially mediated by increased PDGFA and HGF levels in wound tissues.

11.
Int J Endocrinol ; 2020: 2965175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488705

RESUMO

INTRODUCTION: Metabolic surgery is an effective treatment for type 2 diabetes (T2D). At present, there is no authoritative standard for predicting postoperative T2D remission in clinical use. In general, East Asian patients with T2D have a lower body mass index and worse islet function than westerners. We aimed to look for clinical predictors of T2D remission after metabolic surgery in Chinese patients, which may provide insights for patient selection. METHODS: Patients with T2D who underwent metabolic surgery at the Third Xiangya Hospital between October 2008 and March 2017 were enrolled. T2D remission was defined as an HbA1c level below 6.5% and an FPG concentration below 7.1 mmol/L for at least one year in the absence of antidiabetic medications. RESULTS: (1) Independent predictors of short-term T2D remission (1-2 years) were age and C-peptide area under the curve (C-peptide AUC); independent predictors of long-term T2D remission (4-6 years) were C-peptide AUC and fasting plasma glucose (FPG). (2) The optimal cutoff value for C-peptide AUC in predicting T2D remission was 30.93 ng/ml, with a specificity of 67.3% and sensitivity of 75.8% in the short term and with a specificity of 61.9% and sensitivity of 81.5% in the long term, respectively. The areas under the ROC curves are 0.674 and 0.623 in the short term and long term, respectively. (3) We used three variables (age, C-peptide AUC, and FPG) to construct a remission prediction score (ACF), a multidimensional 9-point scale, along which greater scores indicate a better chance of T2D remission. We compared our scoring system with other reported models (ABCD, DiaRem, and IMS). The ACF scoring system had the best distribution of patients and prognostic significance according to the ROC curves. CONCLUSION: Presurgery age, C-peptide AUC, and FPG are independent predictors of T2D remission after metabolic surgery. Among these, C-peptide AUC plays a decisive role in both short- and long-term remission prediction, and the optimal cutoff value for C-peptide AUC in predicting T2D remission was 30.93 ng/ml, with moderate predictive values. The ACF score is a simple reliable system that can predict T2D remission among Chinese patients.

12.
Biomed Res Int ; 2019: 9456847, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428652

RESUMO

Once the adipose tissue is enlarged for the purpose of saving excess energy intake, obesity may be observed. Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is helpful in repairing damaged DNA as it increases the resistance of cancer cells against cytocidal drugs. Peroxisome proliferator-activated receptor γ (PPARγ), an important nucleus transcription factor participating in adipogenesis, has been extensively reported. To date, no study has indicated whether UHRF1 can regulate proliferation and differentiation of human adipose-derived stem cells (hADSCs). Hence, this study aimed to utilize overexpression or downregulation of UHRF1 to explore the possible mechanism of proliferation and differentiation of hADSCs. We here used lentivirus, containing UHRF1 (LV-UHRF1) and siRNA-UHRF1 to transfect hADSCs, on which Cell Counting Kit-8 (CCK-8), cell growth curve, colony formation assay, and EdU proliferation assay were applied to evaluate proliferation of hADSCs, cells cycle was investigated by flow cytometry, and adipogenesis was detected by Oil Red O staining and Western blotting. Our results showed that UHRF1 can promote proliferation of hADSCs after overexpression of UHRF1, while proliferation of hADSCs was reduced through downregulation of UHRF1, and UHRF1 can control proliferation of hADSCs through transition from G1-phase to S-phase; besides, we found that UHRF1 negatively regulates adipogenesis of hADSCs via PPAR γ . In summary, the results may provide a new insight regarding the role of UHRF1 on regulating proliferation and differentiation of hADSCs.


Assuntos
Adipogenia , Tecido Adiposo/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular , Fase G1 , PPAR gama/metabolismo , Fase S , Células-Tronco/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Tecido Adiposo/citologia , Adulto , Humanos , Masculino , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...