Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(8)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39199261

RESUMO

The geomagnetic field (GMF) is crucial for the survival and evolution of life on Earth. The weakening of the GMF, known as the hypomagnetic field (HMF), significantly affects various aspects of life on Earth. HMF has become a potential health risk for future deep space exploration. Oxidative stress is directly involved in the biological effects of HMF on animals or cells. Oxidative stress occurs when there is an imbalance favoring oxidants over antioxidants, resulting in cellular damage. Oxidative stress is a double-edged sword, depending on the degree of deviation from homeostasis. In this review, we summarize the important experimental findings from animal and cell studies on HMF exposure affecting intracellular reactive oxygen species (ROS), as well as the accompanying many physiological abnormalities, such as cognitive dysfunction, the imbalance of gut microbiota homeostasis, mood disorders, and osteoporosis. We discuss new insights into the molecular mechanisms underlying these HMF effects in the context of the signaling pathways related to ROS. Among them, mitochondria are considered to be the main organelles that respond to HMF-induced stress by regulating metabolism and ROS production in cells. In order to unravel the molecular mechanisms of HMF action, future studies need to consider the upstream and downstream pathways associated with ROS.

2.
Biochem Biophys Rep ; 38: 101696, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38586825

RESUMO

Reactive oxygen species (ROS) are one of the potential molecules in response to a hypomagnetic field (HMF), and exposure to an HMF for eight weeks led to an increase in ROS levels in the whole hippocampus area in mice. ROS are mainly derived from the byproducts of mitochondrial metabolism. However, previous in vivo studies mostly focus on the influence of one time point of HMF exposure on the mouse hippocampus and lack comparative studies on the effects of different durations of HMF exposure on the mouse hippocampus. Here, we investigated the effects of different durations of HMF on the number of active mitochondria and ROS levels in mouse hippocampus. Compared with the geomagnetic field (GMF) group, we found that the number of active mitochondria in the hippocampus was significantly reduced during the sixth week of HMF exposure, whereas the number of active mitochondria was significantly reduced and the ROS levels was significantly increased during the eighth week of HMF exposure. The number of active mitochondria gradually decreased and ROS levels gradually increased in both GMF and HMF groups with prolonged exposure time. In addition, the expression level of the PGC-1α gene in the hippocampus, the main regulator of mitochondrial biogenesis, decreased significantly in the eighth week of HMF exposure. These results reveal that the changes in active mitochondria number and ROS levels were dependent on the durations of HMF exposure, and prolonged exposure to HMF exacerbates these changes.

3.
Bioelectromagnetics ; 43(8): 462-475, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36434792

RESUMO

The gut microbiota has been considered one of the key factors in host health, which is influenced by many environmental factors. The geomagnetic field (GMF) represents one of the important environmental conditions for living organisms. Previous studies have shown that the elimination of GMF, the so-called hypomagnetic field (HMF), could affect the physiological functions and resistance to antibiotics of some microorganisms. However, whether long-term HMF exposure could alter the gut microbiota to some extent in mammals remains unclear. Here, we investigated the effects of long-term (8- and 12-week) HMF exposure on the gut microbiota in C57BL/6J mice. Our results clearly showed that 8-week HMF significantly affected the diversity and function of the mouse gut microbiota. Compared with the GMF group, the concentrations of short-chain fatty acids tended to decrease in the HMF group. Immunofluorescence analysis showed that HMF promoted colonic cell proliferation, concomitant with an increased level of reactive oxygen species (ROS). To our knowledge, this is the first in vivo finding that long-term HMF exposure could affect the mouse gut microbiota, ROS levels, and colonic cell proliferation in the colon. Moreover, the changes in gut microbiota can be restored by returning mice to the GMF environment, thus the possible harm to the microbiota caused by HMF exposure can be alleviated. © 2022 Bioelectromagnetics Society.


Assuntos
Colo , Microbioma Gastrointestinal , Espécies Reativas de Oxigênio , Animais , Camundongos , Proliferação de Células , Camundongos Endogâmicos C57BL
4.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408982

RESUMO

Previous studies have found that hypomagnetic field (HMF) exposure impairs cognition behaviors in animals; however, the underlying neural mechanisms of cognitive dysfunction are unclear. The hippocampus plays important roles in magnetoreception, memory, and spatial navigation in mammals. Therefore, the hippocampus may be the key region in the brain to reveal its neural mechanisms. We recently reported that long-term HMF exposure impairs adult hippocampal neurogenesis and cognition through reducing endogenous reactive oxygen species (ROS) levels in adult neural stem cells that are confined in the subgranular zone (SGZ) of the hippocampus. In addition to adult neural stem cells, the redox state of other cells in the hippocampus is also an important factor affecting the functions of the hippocampus. However, it is unclear whether and how long-term HMF exposure affects ROS levels in the entire hippocampus (i.e., the dentate gyrus (DG) and ammonia horn (CA) regions). Here, we demonstrate that male C57BL/6J mice exposed to 8-week HMF exhibit cognitive impairments. We then found that the ROS levels of the hippocampus were significantly higher in these HMF-exposed mice than in the geomagnetic field (GMF) group. PCR array analysis revealed that the elevated ROS levels were due to HMF-regulating genes that maintain the redox balance in vivo, such as Nox4, Gpx3. Since high levels of ROS may cause hippocampal oxidative stress, we suggest that this is another reason why HMF exposure induces cognitive impairment, besides the hippocampal neurogenesis impairments. Our study further demonstrates that GMF plays an important role in maintaining hippocampal function by regulating the appropriate endogenous ROS levels.


Assuntos
Disfunção Cognitiva , Fator de Maturação da Glia , Animais , Cognição , Disfunção Cognitiva/etiologia , Hipocampo , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA