Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(9): 5071-5079, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699825

RESUMO

Microplastic pollution in the water environment is becoming increasingly serious, impacting the growth and development of aquatic organisms. There are limited studies on the mechanisms of microplastic effects on biofilm formation. Therefore, in this study, the effects of polystyrene microplastics (PS-MPs) were investigated on the biofilm formation and development of Pseudomonas aeruginosa. Different concentrations and particle sizes of PS-MPs were selected for exposure tests to explore the effects on biofilm biomass, oxidative stress levels, biofilm structure, and population sensing system. The results showed that PS-MPs induced severe oxidative stress and inhibited biofilm formation and development, and the smaller the particle size, the stronger the inhibitory effect was. The inhibition effect was 0.1 µm>0.5 µm≈1 µm>5 µm. PS-MPs caused severe physical damage through contact with bacteria. The thickness of the biofilm was significantly reduced, damaging the structural stability. The bacteria in the biofilm secreted extracellular polymers to resist the stress of PS-MPs. Meanwhile, PS-MPs interfered with the QS system of P. aeruginosa; down-regulated the expression levels of key genes lasI, lasR, rhlI, and rhlR; inhibited the synthesis and secretion of signal molecules and related virulence factors; and ultimately affected the formation and structural stability of biofilms.


Assuntos
Microplásticos , Plásticos , Microplásticos/toxicidade , Pseudomonas aeruginosa , Poliestirenos/toxicidade , Biofilmes
2.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012100

RESUMO

RAV transcription factors (TFs) are unique to higher plants and contain both B3 and APETALA2 (AP2) DNA binding domains. Although sets of RAV genes have been identified from several species, little is known about this family in wheat. In this study, 26 RAV genes were identified in the wheat genome. These wheat RAV TFs were phylogenetically clustered into three classes based on their amino acid sequences. A TaRAV gene located on chromosome 1D was cloned and named TaRAV1. TaRAV1 was expressed in roots, stems, leaves, and inflorescences, and its expression was up-regulated by heat while down-regulated by salt, ABA, and GA. Subcellular localization analysis revealed that the TaRAV1 protein was localized in the nucleus. The TaRAV1 protein showed DNA binding activity in the EMSA assay and transcriptional activation activity in yeast cells. Overexpressing TaRAV1 enhanced the salt tolerance of Arabidopsis and upregulated the expression of SOS genes and other stress response genes. Collectively, our data suggest that TaRAV1 functions as a transcription factor and is involved in the salt stress response by regulating gene expression in the SOS pathway.


Assuntos
Arabidopsis , Triticum , Arabidopsis/metabolismo , DNA , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo
3.
New Phytol ; 232(1): 176-189, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34192362

RESUMO

In Arabidopsis, the high-affinity K+ transporter HAK5 is the major pathway for root K+ uptake when below 100 µM; HAK5 responds to Low-K+ (LK) stress by strongly and rapidly increasing its expression during K+ -deficiency. Therefore, positive regulators of HAK5 expression have the potential to improve K+ uptake under LK. Here, we show that mutants of the transcription factor MYB77 share a LK-induced leaf chlorosis phenotype, lower K+ content, and lower Rb+ uptake of the hak5 mutant, but not the shorter root growth, and that overexpression of MYB77 enhanced K+ uptake and improved tolerance to LK stress. Furthermore, we demonstrated that MYB77 positively regulates the expression of HAK5, by binding to the HAK5 promoter and enhances high-affinity K+ uptake of roots. As such, our results reveal a novel pathway for enhancing HAK5 expression under LK stress, and provides a candidate for increasing the tolerance of plants to LK.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Transporte de Íons , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Potássio/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...