Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611196

RESUMO

Conventional paint spraying processes often use small molecule organic solvents and emit a large amount of volatile organic compounds (VOCs) that are highly toxic, flammable, and explosive. Alternatively, the spraying technology using supercritical CO2 (scCO2) as a solvent has attracted attention because of its ability to reduce VOC emissions, but the flow characteristics of coatings have not been thoroughly studied. Therefore, we numerically simulate the spraying process based on the actual process of scCO2 spraying polyurethane coatings by computational fluid dynamics (CFD). The effects of inlet pressure and volume fraction of scCO2 on the fluid motion parameters inside the nozzle as well as the atomization effect of droplets outside the nozzle are investigated. The simulated results show that a fluid with a large volume fraction of scCO2 will obtain a smaller density, resulting in a larger velocity and a larger distance for the spray to effectively spray. Higher coating content and bigger inlet pressures will result in higher discrete phase model (DPM) concentrations, and thus a bigger inlet pressure should be used to make the droplets more uniform across the 30° spray range. This study can provide theoretical guidance for the process of scCO2-sprayed polyurethane resin.

2.
Carbohydr Polym ; 317: 121092, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364960

RESUMO

Recently, the application of cellulose nanocrystals (CNCs) in the field of hydrogel sensors has attracted much attention. However, it remains challenging to construct CNC-reinforced conductive hydrogels with a combination of enhanced strength, low hysteresis, high elasticity and remarkable adhesiveness. Herein, we present a facile method to prepare conductive nanocomposite hydrogels with the above-mentioned properties by reinforcing chemically crosslinked poly(acrylic acid) (PAA) hydrogel with rational-designed copolymer-grafted CNCs. The copolymer-grafted CNCs interact with PAA matrix to form carboxyl-amide conventional hydrogen bonds and carboxyl-amino ionic hydrogen bonds, among which the ionic hydrogen bonds with rapid recovery capability are critical to the low hysteresis and high elasticity of hydrogel. The introduction of copolymer-grafted CNCs endowed the hydrogels with enhanced tensile/compressive strength, high resilience (>95 %) during tensile cyclic loading, rapid self-recovery during compressive cyclic loading and improved adhesiveness. Thanks to the high elasticity and durability of hydrogel, the assembled hydrogel sensors exhibited good cycling repeatability and durability in detecting various strains, pressures and human motions. The hydrogel sensors also showed satisfying sensitivity. Hence, the proposed preparation method and the obtained CNC-reinforced conductive hydrogels would open new avenues in flexible strain and pressure sensors for human motion detection and beyond.

3.
Chem Commun (Camb) ; 59(2): 207-210, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36477156

RESUMO

We report for the first time the synthesis of heterobimetallic block copolymers with a combined main-chain/side-chain topology. The photophysical, electrochemical, and thermal properties and ring-opening metathesis polymerization-induced crystallization-driven self-assembly (ROMPI-CDSA) behavior of these polymers can be significantly modulated by switching the metal identity.

4.
Angew Chem Int Ed Engl ; 61(25): e202203169, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35394706

RESUMO

We developed o-carborane as a new mechanophore by showing that the o-carborane cluster is the preferred scission site in chain-centered polymers through ultrasonication mechanochemistry. Mechanistic studies are consistent with a predominately homolytic mechanism of chain scission. The mechanically generated monocarbaborane fragments are highly reactive toward alcohol nucleophiles. By contrast, carborane with a different regiochemistry (m-carborane) maintained its high mechanical stability. DFT simulations provide insights into the origins of carborane's mechanical lability. This fundamental research provides a new stimulus for carborane cage activation.

5.
Small ; 18(22): e2200532, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35318812

RESUMO

Accumulation of snow and ice often causes problems and even dangerous situations for both industry and the general population. Passive de-icing technologies, e.g., hydrophobic, liquid-infused bionic surfaces, have attracted more and more attention compared with active de-icing technologies, e.g., electric heating, hot air heating, due to the passive de-icing technology's lower energy consumption and sustainability footprint. Using passive de-icing coatings seems to be one of the most promising solutions. However, the previously reported de-icing coatings suffer from high ice adhesion strength or short service life caused by wear. An intrinsic self-healing material based on poly-silicone-urea is developed in this work to address these problems. The material is prepared by introducing dynamic disulfide bonds into the hard phase of the polymer. Experimental results indicate that this poly-silicone-urea has a self-healing efficiency of close to 99%. More interestingly, it is found that the coating prepared from this poly-silicone-urea has a super low ice adhesion force, only 7 ± 1 kPa, which is almost the lowest value compared with previous intrinsic self-healing de-/anti-icing reports. This material can maintain low ice adhesion strength after healing. This intrinsic self-healing poly-silicone-urea can meet several practical applications, opening the door for future sustainable anti-/de-icing technologies.


Assuntos
Gelo , Silicones , Humanos , Fenômenos Físicos , Propriedades de Superfície , Ureia
6.
Adv Mater ; 34(9): e2108012, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34877724

RESUMO

An alternative strategy of choosing photothermal and weak-immunostimulatory porous silicon@Au nanocomposites as particulate cores to prepare a biomimetic nanovaccine is reported to improve its biosafety and immunotherapeutic efficacy for solid tumors. A quantitative analysis method is used to calculate the loading amount of cancer cell membranes onto porous silicon@Au nanocomposites. Assisted with foreign-body responses, these exogenous nanoparticulate cores with weak immunostimulatory effect can still efficiently deliver cancer cell membranes into dendritic cells to activate them and the downstream antitumor immunity, resulting in no occurrence of solid tumors and the survival of all immunized mice during 55 day observation. In addition, this nanovaccine, as a photothermal therapeutic agent, synergized with additional immunotherapies can significantly inhibit the growth and metastasis of established solid tumors, via the initiation of the antitumor immune responses in the body and the reversion of their immunosuppressive microenvironments. Considering the versatile surface engineering of porous silicon nanoparticles, the strategy developed here is beneficial to construct multifunctional nanovaccines with better biosafety and more diagnosis or therapeutic modalities against the occurrence, recurrence, or metastasis of solid tumors in future clinical practice.


Assuntos
Nanocompostos , Nanopartículas , Neoplasias , Animais , Biomimética/métodos , Imunoterapia , Camundongos , Nanopartículas/uso terapêutico , Neoplasias/terapia , Microambiente Tumoral
7.
J Phys Chem B ; 125(20): 5420-5433, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33978413

RESUMO

The quantitative relationship between the surface chemistry of carbon materials and the compatibility with polymers is a fundamental and vital physical chemistry problem in the field of polymer nanocomposites. Traditional experimental methods are difficult to solve this problem, so no theory has been formed to guide the functionalization of carbon materials. In this work, the quantitative relationship between functional groups and Hildebrand (δT) and transformed Hansen (δvdW and δele) solubility parameters of fullerene (C60) was determined by molecular dynamics simulation. Besides, which solubility parameter can more accurately predict the compatibility between C60 and three typical polymers with different polarity as a function of grafting ratio is investigated. Very interestingly, no matter which group is grafted, δT and δvdW of C60 show a slight increase first and then a decrease with the grafting ratio, whereas δele first increases abruptly and then decreases slightly. The introduction of polar groups (-OH, -COOH, and -NH2) is conducive to improving the compatibility between C60 and polymers, whereas the introduction of the nonpolar group (-CH3) is not. In terms of predicting compatibility, the Hildebrand solubility parameter is better than the Hansen solubility parameter due to the nonpolar nature of the polymers, even for nitrile butadiene rubber. Finally, the optimum grafting ratios corresponding to the maximum binding energies of C60/polymers mixtures were obtained. This study provides a new understanding of the functionalization of C60 at the molecular level and promotes the development of the theory of the thermodynamics of mixing.

8.
Soft Matter ; 17(8): 2191-2204, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33459746

RESUMO

An intrinsic self-healing polyurethane (PU) elastomer with excellent self-healing efficiency was prepared. The self-healing properties of this elastomer as well as the temperature dependence of self-healing can be tailored by regulating the molar ratio of hard to soft segments. The self-healing efficiency of 92.5% is the highest when the molar ratio of 4,4-methylenedicyclohexyl diisocyanate (HMDI) to polypropylene carbonate polyol (PPC) is 1.3 and the temperature is 25 °C. In situ temperature swing infrared spectra and low-field nuclear magnetic resonance reveal that the soft segment, PPC, endows PU with a dense dynamic hydrogen bond network, and the dissociation and reconstruction of the hydrogen bond network enable the PU to heal. To date, the exchange of hydrogen bonds has not been observed intuitively through experimental means. Therefore, the number, type, strength, lifetime, and the exchange of hydrogen bonds in the self-healing process at different temperatures were investigated by molecular dynamics (MD) simulation. The simulated results show that the type of hydrogen bond exchange between functional groups will be affected by temperature. The hydrogen bonds between urethane and urea groups play a leading role in the self-healing properties due to the high strength and a large number of hydrogen bonds at both 25 and 50 °C. The stronger strength, longer lifetime, and greater number of effective hydrogen bonds at 25 °C make the self-healing efficiency of PU higher than at 50 °C.

9.
ACS Omega ; 5(49): 32084-32093, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33344863

RESUMO

We prepared novel flame retardants with concurrent excellent smoke-suppression properties based on lignin biomass modified by functional groups containing N and P. Each lignin-based flame retardant (Lig) was quantitatively added to a fixed amount of epoxy resin (EP), to make a Lig/EP composite. The best flame retardancy was achieved by a Lig-F/EP composite with elevated P content, achieving a V-0 rating of the UL-94 test and exhibiting excellent smoke suppression, with substantial reduction of total heat release and smoke production (by 46.6 and 53%, respectively). In this work, we characterized the flame retardants and the retardant/EP composites, evaluated their performances, and proposed the mechanisms of flame retardancy and smoke suppression. The charring layer of the combustion residual was analyzed using SEM and Raman spectroscopy to support the proposed mechanisms. Our work provides a feasible method for lignin modification and applications of new lignin-based flame retardants.

10.
Polymer (Guildf) ; 1872020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32863439

RESUMO

Site-specific cobaltocenium-labeled polymers are synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using cobaltocenium-labeled chain transfer agents. These chain transfer agents show counterion-dependent solubility. Based on the chemical structure of the chain transfer agents, single cobaltocenium moieties are dictated to be in predetermined locations at either the center or terminals of the polymer chains. Polymerization of hydrophobic monomers (methyl methacrylate, methyl acrylate and styrene) and hydrophilic monomers (2-(dimethylamino)ethyl methacrylate and methacrylic acid) is demonstrated to follow a controlled manner based on kinetic studies. Cobaltocenium-labeled polymers with molecular weights greater than 100,000 Da can be prepared by using a difunctional chain transfer agent. Photophysical properties, electrochemical properties, thermal properties and morphology of the cobaltocenium-labeled polymers are also investigated.

11.
Langmuir ; 36(31): 9291-9305, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32787072

RESUMO

Solubility parameters play an important role in predicting compatibility between components. The current study on solubility parameters of carbon materials (graphene, carbon nanotubes, and fullerene, etc.) is unsatisfactory and stagnant due to experimental limitations, especially the lack of a quantitative relationship between functional groups and solubility parameters. Fundamental understanding of the high-performance nanocomposites obtained by carbon material modification is scarce. Therefore, in the past, the trial and error method was often used for the modification of carbon materials, and no theory has been formed to guide the experiment. In this work, the effect of defects, size, and the number of walls on the Hildebrand solubility parameter (δT) of carbon nanotubes (CNTs) was investigated by molecular dynamics (MD) simulation. Besides, three-component Hansen solubility parameters (δD, δp, δH) were transformed into two-component solubility parameters (δvdW, δelec). The quantitative relation between functional groups and two-component solubility parameters of single-walled carbon nanotubes (SWCNTs) was then given. An important finding is that the δT and δvdW of SWCNTs first decrease, reach a minimum, and then increase with increasing grafting ratio. The thermodynamic compatibility between functionalized SWCNTs and six typical polymers was investigated by the Flory-Huggins mixing model. Two-component solubility parameters were proven to be able to effectively predict their compatibility. Importantly, we theoretically gave the optimum grafting ratio at which the compatibility between functionalized SWCNTs and polymers is the best. The functionalization principle of SWCNTs toward good compatibility between SWCNTs and polymers was also given. This study gives a new insight into the solubility parameters of functionalized SWCNTs and provides theoretical guidance for the preparation of high-performance SWCNTs/polymers composites.

12.
Phys Chem Chem Phys ; 22(31): 17620-17631, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32720967

RESUMO

An intrinsic self-healing polyurethane (PU) elastomer was synthesized in our previous work. In this work, three-dimensional (3D) micro-crack models based on experimental samples were further introduced to investigate their self-healing behavior, mechanism, and temperature dependence by molecular dynamics (MD) simulations. In particular, the number, type, strength, and lifetime of hydrogen bonds as well as the microscopic behavior of molecular diffusion in the self-healing process were investigated. It was found that the self-healing capacity of PU mainly results from intermolecular electrostatic interactions, and the hydrogen bond plays a key role in electrostatic interactions. There is an optimum ratio of soft and hard segments at which the number of hydrogen bonds is appropriate and the self-healing capacity is optimum. Besides, the temperature has an optimal value at which the self-healing rate of PU is the fastest. The exchanges of hydrogen bonds, which endowed PU with self-healing capacity, were further revealed intuitively. We found that the exchanges of hydrogen bonds are reversible and more likely to occur on the urethane groups. This study deepened the understanding of the self-healing character of PU at the molecular level.

13.
ACS Omega ; 4(18): 17880-17889, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31681897

RESUMO

Optimal conditions for ultrasonic-assisted extraction of polysaccharide from Chinese okra were found using response surface methodology. The okra polysaccharide (OPS) was used for the adsorption of methyl violet 6B (MV). Conditions for maximal adsorption efficiency of MV were established. The mechanism of MV adsorption was investigated by the characterization and physicochemical analysis of OPS before and after the adsorption of MV. Both infrared (IR) analysis and molecular dynamics (MD) simulation suggest that MV adsorption by OPS was an electrostatic interaction between MV and oxygen-containing groups of OPS. Further, the results of first-principles calculation were in agreement with IR spectroscopy measurements and MD simulation, which were all consistent with the suggested adsorption mechanism. Optimization of okra extraction conditions, maximized efficiency of MV adsorption by OPS, and the understanding of the adsorption mechanism are the highlights of this work, providing a reference for promising applications of OPS in the treatment of wastewater in textile, paper, and other industries.

14.
ACS Omega ; 4(6): 11229-11236, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460224

RESUMO

This work prepared a type of diblock copolymer with thermo- and photosensitivity in ionic liquids (ILs). P(N,N-dimethylacrylamide) (compatible with ILs) was prepared as one segment, while butyl acrylate (BA) and 4-phenylazophenylmethacrylate (AzoMA) were copolymerized as another segment P(AzoMA-r-BA) with stimuli responsiveness. The diblock copolymer showed tunable lower critical micellization temperature (LCMT) in two mixed imidazole ionic liquids. The value of LCMT depends on not only the conformation status of the azo group in copolymers but also the azo group content in copolymers and mixed ratio of ionic liquids. Based on this tunable LCMT, photoinduced micellization/demicellization can be achieved near room temperature by alternate irradiation with visible and ultraviolet light, and it is totally reversible.

15.
RSC Adv ; 9(68): 40062-40071, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-35541406

RESUMO

Based on our previous studies on the modification of in-chain styrene butadiene rubber (SBR) using 3-mercaptopropionic acid as well as its composites filled with silica, we further constructed two types of models (amorphous and layered) to investigate the temperature dependence of the interfacial bonding characteristics of silica/SBR composites via molecular dynamics (MD) simulation. The competing effects of rubber-rubber interactions and filler-rubber interactions were identified, and the relationship between the competing effects and the temperature was determined. Besides this, the effect of temperature on the mobility and distribution of SBR chains on the surface of silica was investigated. It was found that the stronger the interfacial interactions, the less sensitive the motion of SBR chains to temperature. Finally, the number and length of hydrogen bonds as a function of temperature were analyzed. These simulated results deepened the understanding of interface temperature dependence of the silica/SBR composites and gave a molecular level explanation for the existence of an optimum modifier content (14.2 wt%) that is temperature independent.

16.
Carbohydr Polym ; 198: 1-8, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30092978

RESUMO

We present a facile strategy for the fabrication of mechanically tough and self-recoverable nanocomposite hydrogels reinforced by surface-modified cellulose nanocrystals. Polyacrylamide grafted cellulose nanocrystal (CNC-g-PAM) was first synthesized by ceric salt initiated surface graft polymerization of acrylamide onto CNC, then incorporated into chemically crosslinked poly(acrylic acid) (PAA) networks to obtain dual-crosslinked CNC-g-PAM/PAA nanocomposite hydrogels. CNC-g-PAM acted as both interfacial compatible nanofillers and physical crosslinkers through reversible hydrogen bonds between PAA and PAM on the surface of CNC. FTIR analysis confirmed the formation of above hydrogen bonds. Scanning electron microscopy observations revealed good interfacial compatibility between CNC and PAA matrix. The nanocomposite hydrogels exhibited decreasing swelling ratio with increasing CNC-g-PAM content. Uniaxial tensile tests and tensile loading-unloading tests showed that elastic modulus, breaking strength and elongation at break of the nanocomposite hydrogels were significantly increased compared to PAA hydrogel, and that the nanocomposite hydrogels exhibited good self-recovery ability after large deformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...