Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Nat Biomed Eng ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103509

RESUMO

The mechanisms linking the brain's network structure to cognitively relevant activation patterns remain largely unknown. Here, by leveraging principles of network control, we show how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic database. Specifically, we systematically integrated large-scale multimodal neuroimaging data from functional magnetic resonance imaging, diffusion tractography, cortical morphometry and positron emission tomography to simulate how anatomically guided transitions between cognitive states can be reshaped by neurotransmitter engagement or by changes in cortical thickness. Our model incorporates neurotransmitter-receptor density maps (18 receptors and transporters) and maps of cortical thickness pertaining to a wide range of mental health, neurodegenerative, psychiatric and neurodevelopmental diagnostic categories (17,000 patients and 22,000 controls). The results provide a comprehensive look-up table charting how brain network organization and chemoarchitecture interact to manifest different cognitive topographies, and establish a principled foundation for the systematic identification of ways to promote selective transitions between cognitive topographies.

2.
Elife ; 122024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022924

RESUMO

How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.


The human brain consists of billions of neurons which process sensory inputs, such as sight and sound, and combines them with information already stored in the brain. This integration of information guides our decisions, thoughts, and movements, and is hypothesized to be integral to consciousness. However, it is poorly understood how the brain regions responsible for processing this integration are organized in the brain. To investigate this question, Luppi et al. employed a mathematical framework called Partial Information Decomposition (PID) which can distinguish different types of information: redundancy (available from many regions) and synergy (which reflects genuine integration). The team applied the PID framework to the brain scans of 100 individuals. This allowed them to identify which brain regions combine information from across the brain (known as gateways), and which ones transmit it back to the rest of the brain (known as broadcasters). Next, Luppi et al. set out to find how these regions compared in unconscious and conscious individuals. To do this, they studied 15 healthy volunteers whose brains were scanned (using a technique called functional MRI) before, during, and after anaesthesia. This revealed that the brain integrated less information when unconscious, and that this reduction happens predominantly in gateway rather than broadcaster regions. The same effect was also observed in the brains of individuals who were permanently unconscious due to brain injuries. These findings provide a way of understanding how information is organised in the brain. They also suggest that loss of consciousness due to brain injuries and anaesthesia involve similar brain circuits. This means it may be possible to gain insights about disorders of consciousness from studying how people emerge from anaesthesia.


Assuntos
Encéfalo , Estado de Consciência , Imageamento por Ressonância Magnética , Humanos , Estado de Consciência/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Masculino , Adulto , Feminino , Adulto Jovem , Rede de Modo Padrão/fisiologia
3.
PLoS One ; 19(7): e0305808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024363

RESUMO

INTRODUCTION/AIMS: Leprosy is the most common treatable peripheral neuropathy worldwide. The detection of peripheral nerve impairment is essential for its diagnosis and treatment, in order to prevent stigmatizing deformities and disabilities. This study was performed to identify neural thickening through multisegmental ultrasound (US). METHODS: We assessed US measurements of cross-sectional areas (CSAs) of ulnar, median and tibial nerves at two points (in the osteofibrous tunnel and proximal to the tunnel), and also of the common fibular nerve at the fibular head level in 53 leprosy patients (LP), and compared with those of 53 healthy volunteers (HV), as well as among different clinical forms of leprosy. RESULTS: US evaluation detected neural thickening in 71.1% (38/53) of LP and a mean number of 3.6 enlarged nerves per patient. The ulnar and tibial were the most frequently affected nerves. All nerves showed significantly higher measurements in LP compared with HV, and also greater asymmetry, with significantly higher values for ulnar and tibial nerves. We found significant CSAs differences between tunnel and pre-tunnel points for ulnar and tibial nerves, with maximum values proximal to the tunnel. All clinical forms of leprosy evaluated showed neural enlargement through US. DISCUSSION: Our findings support the role of multisegmental US as a useful method for diagnosing leprosy neuropathy, revealing that asymmetry, regional and non-uniform thickening are characteristics of the disease. Furthermore, we observed that neural involvement is common in different clinical forms of leprosy, reinforcing the importance of including US evaluation of peripheral nerves in the investigation of all leprosy patients.


Assuntos
Hanseníase , Doenças do Sistema Nervoso Periférico , Ultrassonografia , Humanos , Hanseníase/diagnóstico por imagem , Hanseníase/diagnóstico , Masculino , Feminino , Ultrassonografia/métodos , Adulto , Pessoa de Meia-Idade , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Doenças do Sistema Nervoso Periférico/diagnóstico , Idoso , Nervo Tibial/diagnóstico por imagem , Adulto Jovem , Nervo Ulnar/diagnóstico por imagem , Nervo Ulnar/patologia , Estudos de Casos e Controles , Nervo Mediano/diagnóstico por imagem
4.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853985

RESUMO

Exploring the intricate relationship between brain's structure and function, and how this affects subjective experience is a fundamental pursuit in neuroscience. Psychedelic substances offer a unique insight into the influences of specific neurotransmitter systems on perception, cognition and consciousness. Specifically, their impact on brain function propagates across the structural connectome - a network of white matter pathways linking different regions. To comprehensively grasp the effects of psychedelic compounds on brain function, we used a theoretically rigorous framework known as connectome harmonic decomposition. This framework provides a robust method to characterize how brain function intricately depends on the organized network structure of the human connectome. We show that the connectome harmonic repertoire under DMT is reshaped in line with other reported psychedelic compounds - psilocybin, LSD and ketamine. Furthermore, we show that the repertoire entropy of connectome harmonics increases under DMT, as with those other psychedelics. Importantly, we demonstrate for the first time that measures of energy spectrum difference and repertoire entropy of connectome harmonics indexes the intensity of subjective experience of the participants in a time-resolved manner reflecting close coupling between connectome harmonics and subjective experience.

5.
Trends Neurosci ; 47(7): 551-568, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824075

RESUMO

Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.


Assuntos
Encéfalo , Estado de Consciência , Humanos , Estado de Consciência/fisiologia , Encéfalo/fisiologia , Animais , Cognição/fisiologia
6.
PLoS Comput Biol ; 20(6): e1012178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829900

RESUMO

Striking progress has been made in understanding cognition by analyzing how the brain is engaged in different modes of information processing. For instance, so-called synergistic information (information encoded by a set of neurons but not by any subset) plays a key role in areas of the human brain linked with complex cognition. However, two questions remain unanswered: (a) how and why a cognitive system can become highly synergistic; and (b) how informational states map onto artificial neural networks in various learning modes. Here we employ an information-decomposition framework to investigate neural networks performing cognitive tasks. Our results show that synergy increases as networks learn multiple diverse tasks, and that in tasks requiring integration of multiple sources, performance critically relies on synergistic neurons. Overall, our results suggest that synergy is used to combine information from multiple modalities-and more generally for flexible and efficient learning. These findings reveal new ways of investigating how and why learning systems employ specific information-processing strategies, and support the principle that the capacity for general-purpose learning critically relies on the system's information dynamics.


Assuntos
Encéfalo , Cognição , Aprendizagem , Modelos Neurológicos , Redes Neurais de Computação , Humanos , Aprendizagem/fisiologia , Cognição/fisiologia , Encéfalo/fisiologia , Biologia Computacional , Neurônios/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-38839036

RESUMO

BACKGROUND: Heavy alcohol use and its associated conditions, such as alcohol use disorder, impact millions of individuals worldwide. While our understanding of the neurobiological correlates of alcohol use has evolved substantially, we still lack models that incorporate whole-brain neuroanatomical, functional, and pharmacological information under one framework. METHODS: Here, we utilized diffusion and functional magnetic resonance imaging to investigate alterations to brain dynamics in 130 individuals with a high amount of current alcohol use. We compared these alcohol-using individuals to 308 individuals with minimal use of any substances. RESULTS: We found that individuals with heavy alcohol use had less dynamic and complex brain activity, and through leveraging network control theory, had increased control energy to complete transitions between activation states. Furthermore, using separately acquired positron emission tomography data, we deployed an in silico evaluation demonstrating that decreased D2 receptor levels, as found previously in individuals with alcohol use disorder, may relate to our observed findings. CONCLUSIONS: This work demonstrates that whole-brain, multimodal imaging information can be combined under a network control framework to identify and evaluate neurobiological correlates and mechanisms of heavy alcohol use.

8.
Nat Commun ; 15(1): 4745, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834553

RESUMO

Functional interactions between brain regions can be viewed as a network, enabling neuroscientists to investigate brain function through network science. Here, we systematically evaluate 768 data-processing pipelines for network reconstruction from resting-state functional MRI, evaluating the effect of brain parcellation, connectivity definition, and global signal regression. Our criteria seek pipelines that minimise motion confounds and spurious test-retest discrepancies of network topology, while being sensitive to both inter-subject differences and experimental effects of interest. We reveal vast and systematic variability across pipelines' suitability for functional connectomics. Inappropriate choice of data-processing pipeline can produce results that are not only misleading, but systematically so, with the majority of pipelines failing at least one criterion. However, a set of optimal pipelines consistently satisfy all criteria across different datasets, spanning minutes, weeks, and months. We provide a full breakdown of each pipeline's performance across criteria and datasets, to inform future best practices in functional connectomics.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Masculino , Adulto , Feminino , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico/métodos , Adulto Jovem
9.
Cell Rep Phys Sci ; 5(4): 101892, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38720789

RESUMO

Understanding how different networks relate to each other is key for understanding complex systems. We introduce an intuitive yet powerful framework to disentangle different ways in which networks can be (dis)similar and complementary to each other. We decompose the shortest paths between nodes as uniquely contributed by one source network, or redundantly by either, or synergistically by both together. Our approach considers the networks' full topology, providing insights at multiple levels of resolution: from global statistics to individual paths. Our framework is widely applicable across scientific domains, from public transport to brain networks. In humans and 124 other species, we demonstrate the prevalence of unique contributions by long-range white-matter fibers in structural brain networks. Across species, efficient communication also relies on significantly greater synergy between long-range and short-range fibers than expected by chance. Our framework could find applications for designing network systems or evaluating existing ones.

10.
Emerg Infect Dis ; 30(6): 1228-1231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782033
13.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38463980

RESUMO

The human brain is never at "rest"; its activity is constantly fluctuating over time, transitioning from one brain state-a whole-brain pattern of activity-to another. Network control theory offers a framework for understanding the effort - energy - associated with these transitions. One branch of control theory that is especially useful in this context is "optimal control", in which input signals are used to selectively drive the brain into a target state. Typically, these inputs are introduced independently to the nodes of the network (each input signal is associated with exactly one node). Though convenient, this input strategy ignores the continuity of cerebral cortex - geometrically, each region is connected to its spatial neighbors, allowing control signals, both exogenous and endogenous, to spread from their foci to nearby regions. Additionally, the spatial specificity of brain stimulation techniques is limited, such that the effects of a perturbation are measurable in tissue surrounding the stimulation site. Here, we adapt the network control model so that input signals have a spatial extent that decays exponentially from the input site. We show that this more realistic strategy takes advantage of spatial dependencies in structural connectivity and activity to reduce the energy (effort) associated with brain state transitions. We further leverage these dependencies to explore near-optimal control strategies such that, on a per-transition basis, the number of input signals required for a given control task is reduced, in some cases by two orders of magnitude. This approximation yields network-wide maps of input site density, which we compare to an existing database of functional, metabolic, genetic, and neurochemical maps, finding a close correspondence. Ultimately, not only do we propose a more efficient framework that is also more adherent to well-established brain organizational principles, but we also posit neurobiologically grounded bases for optimal control.

14.
Nat Commun ; 15(1): 2171, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462641

RESUMO

A central challenge of neuroscience is to elucidate how brain function supports consciousness. Here, we combine the specificity of focal deep brain stimulation with fMRI coverage of the entire cortex, in awake and anaesthetised non-human primates. During propofol, sevoflurane, or ketamine anaesthesia, and subsequent restoration of responsiveness by electrical stimulation of the central thalamus, we investigate how loss of consciousness impacts distributed patterns of structure-function organisation across scales. We report that distributed brain activity under anaesthesia is increasingly constrained by brain structure across scales, coinciding with anaesthetic-induced collapse of multiple dimensions of hierarchical cortical organisation. These distributed signatures are observed across different anaesthetics, and they are reversed by electrical stimulation of the central thalamus, coinciding with recovery of behavioural markers of arousal. No such effects were observed upon stimulating the ventral lateral thalamus, demonstrating specificity. Overall, we identify consistent distributed signatures of consciousness that are orchestrated by specific thalamic nuclei.


Assuntos
Anestésicos , Propofol , Animais , Estado de Consciência/fisiologia , Encéfalo/diagnóstico por imagem , Propofol/farmacologia , Córtex Cerebral , Primatas , Tálamo/diagnóstico por imagem , Anestésicos/farmacologia
15.
J Fungi (Basel) ; 10(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535235

RESUMO

This study reports a peculiar case of systemic candidiasis infection associated with pulmonary aspergillosis in an apparently immunocompetent alpaca. A captive 7-year-old female alpaca exhibited respiratory symptoms, underwent treatment with benzylpenicillin and dexamethasone, and succumbed to the infection 40 days later. During the post-mortem examination, subcutaneous emphysema, widespread pneumonia with multiple suppurative foci, scattered necro-suppurative lesions throughout the renal and hepatic parenchyma were evident. Histopathological analysis of the collected tissues revealed multifocal mild lymphoplasmacytic chronic interstitial nephritis, necro-suppurative pneumonia with the presence of fungal hyphae, multifocal foci of mineralization, and fibrosis in the liver. Fungal cultures confirmed the growth of Aspergillus fumigatus from the lungs, and Candida albicans from the liver, kidney, and heart. The only recognizable risk factor for candidiasis and pulmonary aspergillosis in this case was prior corticosteroid and antibiotic therapy. Nevertheless, it is crucial to consider systemic candidosis and pulmonary aspergillosis as potential differential diagnoses in respiratory infections among camelids. Prolonged treatment with glucocorticoids and antibiotics should be avoided as it could represent a risk factor for the onset of pathologies caused by opportunistic fungi such as Candida spp. and Aspergillus spp.

16.
Animals (Basel) ; 14(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396534

RESUMO

Caseous lymphadenitis is a chronic debilitating disease typical of small ruminants, but it is also noted in several other domestic and wild species. In this report, we present the first documented case in Italy of pseudotuberculosis in a roe deer (Capreolus capreolus, Linnaeus 1758) found dead in the mountains of Forlì-Cesena province, Emilia Romagna region. The carcass underwent necropsy according to standard protocols, revealing generalized lymphadenopathy and severe apostematous pneumonia with multifocal and encapsulated abscesses. Corynebacterium pseudotuberculosis was isolated from the lung parenchyma, lymph nodes and abscesses. Additionally, severe parasitic bronchopneumonia of the caudal lobes and gastrointestinal strongyle infestation were detected. To our knowledge, this is the first documented case of CLA referable to C. pseudotubercolosis in a roe deer in Italy.

17.
Comput Biol Med ; 170: 107857, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244468

RESUMO

Recent research is revealing how cognitive processes are supported by a complex interplay between the brain and the rest of the body, which can be investigated by the analysis of physiological features such as breathing rhythms, heart rate, and skin conductance. Heart rate dynamics are of particular interest as they provide a way to track the sympathetic and parasympathetic outflow from the autonomic nervous system, which is known to play a key role in modulating attention, memory, decision-making, and emotional processing. However, extracting useful information from heartbeats about the autonomic outflow is still challenging due to the noisy estimates that result from standard signal-processing methods. To advance this state of affairs, we propose a novel approach in how to conceptualise and model heart rate: instead of being a mere summary of the observed inter-beat intervals, we introduce a modelling framework that views heart rate as a hidden stochastic process that drives the observed heartbeats. Moreover, by leveraging the rich literature of state-space modelling and Bayesian inference, our proposed framework delivers a description of heart rate dynamics that is not a point estimate but a posterior distribution of a generative model. We illustrate the capabilities of our method by showing that it recapitulates linear properties of conventional heart rate estimators, while exhibiting a better discriminative power for metrics of dynamical complexity compared across different physiological states.


Assuntos
Sistema Nervoso Autônomo , Coração , Frequência Cardíaca/fisiologia , Teorema de Bayes , Sistema Nervoso Autônomo/fisiologia , Encéfalo/fisiologia
18.
Res Vet Sci ; 168: 105152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219471

RESUMO

Pleuromutilins (tiamulin and valnemulin) are often used to treat swine dysentery due to recurrent resistance to macrolides and lincosamides. Recently, reduced susceptibility of B. hyodysenteriae to pleuromutilin has been reported. 536 strains of B. hyodysenteriae were isolated from symptomatic pigs weighing 30-150 kg in northern Italy between 2005 and 2022. B. hyodysenteriae was isolated by standard methods and confirmed by PCR. The minimum inhibitory concentration (MIC) to doxycycline, lincomycin, tiamulin, tylosin, tylvalosine and valnemulin was evaluated according to CLSI procedures and MIC data were reported as MIC 50 and MIC 90. The temporal trend of the MIC values was evaluated by dividing the data into two groups (2005-2013 and 2014-2022). Comparison of the distribution in frequency classes in the two periods was performed using Pearson's chi-squared test (p < 0.01). MIC 50 was close to the highest values tested for lincomycin and tylosin, while MIC 90 was close to the highest values tested for all antibiotics. 71.7% of the strains were susceptible to tylvalosin, while 75%-80.4% had reduced susceptibility to valnemulin and tiamulin, respectively. The difference in the distribution of MIC classes was statistically significant in the two periods for doxycycline, tiamulin, tylvalosin and valnemulin, and more MIC classes above the epidemiological cut-off were observed in 2014-2022 compared with 2005-2013. The evaluation of the trends during the period considered shows a decreasing rate of wild-type strains with MIC values below the epidemiological cut-off over time and confirms the presence of resistant strains in northern Italy.


Assuntos
Brachyspira hyodysenteriae , Brachyspira , Doenças dos Suínos , Tilosina/análogos & derivados , Animais , Suínos , Brachyspira hyodysenteriae/genética , Doxiciclina , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/epidemiologia , Antibacterianos/farmacologia , Pleuromutilinas , Lincomicina , Testes de Sensibilidade Microbiana/veterinária , Itália , Diterpenos
19.
Trends Cogn Sci ; 28(4): 352-368, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38199949

RESUMO

To explain how the brain orchestrates information-processing for cognition, we must understand information itself. Importantly, information is not a monolithic entity. Information decomposition techniques provide a way to split information into its constituent elements: unique, redundant, and synergistic information. We review how disentangling synergistic and redundant interactions is redefining our understanding of integrative brain function and its neural organisation. To explain how the brain navigates the trade-offs between redundancy and synergy, we review converging evidence integrating the structural, molecular, and functional underpinnings of synergy and redundancy; their roles in cognition and computation; and how they might arise over evolution and development. Overall, disentangling synergistic and redundant information provides a guiding principle for understanding the informational architecture of the brain and cognition.


Assuntos
Encéfalo , Cognição , Humanos
20.
Brain ; 147(1): 56-80, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37703310

RESUMO

Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.


Assuntos
Córtex Cerebral , Receptor 5-HT2A de Serotonina , Adulto , Humanos , Encéfalo , Córtex Cerebral/fisiologia , Cognição/fisiologia , Neuroimagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA