Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902138

RESUMO

Fatty acids have received growing interest in Leishmania biology with the characterization of the enzymes allowing the complete fatty acid synthesis of this trypanosomatid parasite. This review presents a comparative analysis of the fatty acid profiles of the major classes of lipids and phospholipids in different species of Leishmania with cutaneous or visceral tropism. Specificities relating to the parasite forms, resistance to antileishmanial drugs, and host/parasite interactions are described as well as comparisons with other trypanosomatids. Emphasis is placed on polyunsaturated fatty acids and their metabolic and functional specificities, in particular, their conversion into oxygenated metabolites that are inflammatory mediators able to modulate metacyclogenesis and parasite infectivity. The impact of lipid status on the development of leishmaniasis and the potential of fatty acids as therapeutic targets or candidates for nutritional interventions are discussed.


Assuntos
Leishmania , Leishmaniose , Parasitos , Animais , Ácidos Graxos , Biomarcadores
2.
Lipids ; 58(2): 81-92, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36544247

RESUMO

Leishmania parasites are the causative agents of visceral or cutaneous leishmaniasis in humans and of canine leishmaniosis. The macrophage is the predilected host cell of Leishmania in which the promastigote stage is transformed into amastigote. We previously showed changes in the fatty acid composition (FA) of lipids in two strains of Leishmania donovani upon differentiation of promastigote to amastigote, including increased proportions of arachidonic acid (AA) and to a less extent of docosahexaenoic acid (DHA). Here, we carried out supplementation with AA or DHA on two Leishmania infantum strains, a visceral (MON-1) and a cutaneous (MON-24), to evaluate the role of these FA in parasite/macrophage interactions. The proportions of AA or DHA in total lipids were significantly increased in promastigotes cultured in AA- or DHA-supplemented media compared to controls. The content of FA-derived oxygenated metabolites was enhanced in supplemented strains, generating especially epoxyeicosatrienoic acids (11,12- and 14,15-EET) and hydroxyeicosatetraenoic acids (5- and 8- HETE) from AA, and hydroxydocosahexaenoic acids (14- and 17-HDoHE) from DHA. For both MON-1 and MON-24, AA-supplemented promastigotes showed higher infectivity towards J774 macrophages as evidenced by higher intracellular amastigote numbers. Higher infectivity was observed after DHA supplementation for MON-24 but not MON-1 strain. ROS production by macrophages increased upon parasite infection, but only minor change was observed between control and supplemented parasites. We propose that under high AA or DHA environment that is associated with AA or DHA enrichment of promastigote lipids, FA derivatives can accumulate in the parasite, thereby modulating parasite infectivity towards host macrophages.


Assuntos
Leishmania infantum , Leishmaniose Cutânea , Leishmaniose Visceral , Parasitos , Humanos , Camundongos , Animais , Cães , Leishmania infantum/metabolismo , Macrófagos/parasitologia , Leishmaniose Cutânea/parasitologia , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismo , Leishmaniose Visceral/parasitologia , Camundongos Endogâmicos BALB C
3.
Biochimie ; 203: 77-92, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36184001

RESUMO

The term extracellular vesicles (EVs) has been recommended to describe various membrane-bound vesicles secreted by most living cells and found in various biological fluids. They gained growing interest as mediators of cell-cell communication and for their roles in different patho-physiological processes. In addition, they were recently considered as disease biomarkers and new drug delivery systems. However, it is still difficult to link a biological function to a specific EV population among the heterogenous EV mixture secreted in the extracellular space due to limitations of optimal isolation methods. EV classification according to their size as small (<200 nm) and large (>200 nm) vesicles is also completed by the identification of selected proteins, nucleic acids and lipids. In this review, we summarized briefly knowledge about the composition and role of EV lipids that received less attention compared to their protein and nucleic acid content. Lipids are not only essential structural components of EVs, but can give important information on their biogenesis. Especially, we discussed our recent data showing the utility of bis(monoacylglycero)phosphate (BMP), a specific endolysosomal lipid marker, that could sign the endosomal origin of small EVs, classically named as exosomes.


Assuntos
Exossomos , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Exossomos/metabolismo , Biomarcadores/metabolismo , Comunicação Celular , Proteínas/metabolismo , Lipídeos
4.
Biochimie ; 179: 247-256, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33159981

RESUMO

Viruses, including the novel coronavirus SARS-CoV-2, redirect infected cell metabolism to their own purposes. After binding to its receptor angiotensin-converting enzyme 2 (ACE2) on the cell surface, the SARS-CoV-2 is taken up by receptor-mediated endocytosis ending in the acidic endolysosomal compartment. The virus hijacks the endosomal machinery leading to fusion of viral and endosomal membranes and release of the viral RNA into the cytosol. This mini-review specifically highlights the membrane lipid organization of the endosomal system focusing on the unconventional and late endosome/lysosome-specific phospholipid, bis(monoacylglycero)phosphate (BMP). BMP is enriched in alveolar macrophages of lung, one of the target tissue of SARS-CoV-2. This review details the BMP structure, its unsaturated fatty acid composition and fusogenic properties that are essential for the highly dynamic formation of the intraluminal vesicles inside the endosomes. Interestingly, BMP is necessary for infection and replication of enveloped RNA virus such as SARS-CoV-1 and Dengue virus. We also emphasize the role of BMP in lipid sorting and degradation, especially cholesterol transport in cooperation with Niemann Pick type C proteins (NPC 1 and 2) and with some oxysterol-binding protein (OSBP)-related proteins (ORPs) as well as in sphingolipid degradation. Interestingly, numerous virus infection required NPC1 as well as ORPs along the endocytic pathway. Furthermore, BMP content is increased during pathological endosomal lipid accumulation in various lysosomal storage disorders. This is particularly important knowing the high percentage of patients with metabolic disorders among the SARS-CoV-2 infected patients presenting severe forms of COVID-19.


Assuntos
Endocitose , Interações entre Hospedeiro e Microrganismos , Lisofosfolipídeos/metabolismo , Monoglicerídeos/metabolismo , SARS-CoV-2/fisiologia , Colesterol/metabolismo , Homeostase , Humanos
5.
Arterioscler Thromb Vasc Biol ; 40(11): 2728-2737, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32907370

RESUMO

OBJECTIVE: Patients with schizophrenia have increased long-term mortality attributable to cardiovascular disease and commonly demonstrate features of mixed dyslipidemia with low HDL-C (high-density lipoprotein cholesterol). The removal of cholesterol from cells by HDL via specific ATP-binding cholesterol transporters is a major functional property of HDL, and its measurement as cholesterol efflux capacity (CEC) can predict cardiovascular risk. Whether HDL function is impaired in patients with schizophrenia is unknown. Approach and Results: We measured basal and ABCA1 (ATP-binding cassette transporter A1)- and ABCG1 (ATP-binding cassette transporter G1)-dependent CEC, comparing patients with schizophrenia with age- and sex-matched healthy controls, and related our findings to nuclear magnetic resonance analysis of lipoprotein subclasses. Total plasma cholesterol and LDL-C (low-density lipoprotein cholesterol) were comparable between healthy controls (n=51) and patients (n=120), but patients with schizophrenia had increased total plasma triglyceride, low HDL-C and apo (apolipoprotein) A-I concentrations. Nuclear magnetic resonance analysis indicated a marked (15-fold) increase in large triglyceride-rich lipoprotein particle concentration, increased small dense LDL particles, and fewer large HDL particles. Despite lower HDL-C concentration, basal CEC was 13.7±1.6% higher, ABCA1-specific efflux was 35.9±1.6% higher, and ABCG1 efflux not different, in patients versus controls. In patients with schizophrenia, ABCA1-specific efflux correlated with the abundance of small 7.8 nm HDL particles but not with serum plasminogen or triglyceride levels. CONCLUSIONS: Patients with schizophrenia have increased concentrations of atherogenic apoB-containing lipoproteins, decreased concentrations of large HDL particles, but enhanced ABCA1-mediated CEC. In this population, preventative strategies should focus on reducing atherogenic lipoproteins rather than increasing CEC.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/sangue , Dislipidemias/sangue , Lipoproteínas/sangue , Esquizofrenia/sangue , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Animais , Antipsicóticos/uso terapêutico , Biomarcadores/sangue , Células CHO , Estudos de Casos e Controles , Cricetulus , Dislipidemias/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico , Esquizofrenia/tratamento farmacológico , Triglicerídeos/sangue
6.
Biochimie ; 178: 26-38, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32659447

RESUMO

Bis(monoacylglycero)phosphate (BMP), also known as lysobisphosphatidic acid (LBPA), is a phospholipid specifically enriched in the late endosome-lysosome compartment playing a crucial role for the fate of endocytosed components. Due to its presence in extracellular fluids during diseases associated with endolysosomal dysfunction, it is considered as a possible biomarker of disorders such as genetic lysosomal storage diseases and cationic amphiphilic drug-induced phospholipidosis. However, there is no true validation of this biomarker in human studies, nor a clear identification of the carrier of this endolysosome-specific lipid in biofluids. The present study demonstrates that in absence of any sign of renal failure, BMP, especially all docosahexaenoyl containing species, are significantly increased in the urine of patients treated with the antiarrhythmic drug amiodarone. Such urinary BMP increase could reflect a generalized drug-induced perturbation of the endolysosome compartment as observed in vitro with amiodarone-treated human macrophages. Noteworthy, BMP was associated with extracellular vesicles (EVs) isolated from human urines and extracellular medium of human embryonic kidney HEK293 cells and co-localizing with classical EV protein markers CD63 and ALIX. In the context of drug-induced endolysosomal dysfunction, increased BMP-rich EV release could be useful to remove excess of undigested material. This first human pilot study not only reveals BMP as a urinary biomarker of amiodarone-induced endolysosomal dysfunction, but also highlights its utility to prove the endosomal origin of EVs, also named as exosomes. This peculiar lipid already known as a canonical late endosome-lysosome marker, may be thus considered as a new lipid marker of urinary exosomes.


Assuntos
Endossomos/química , Endossomos/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Lisofosfolipídeos/metabolismo , Monoglicerídeos/metabolismo , Idoso , Amiodarona/efeitos adversos , Animais , Antiarrítmicos/efeitos adversos , Biomarcadores/urina , Endossomos/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Nefropatias/induzido quimicamente , Lisofosfolipídeos/química , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Monoglicerídeos/química , Projetos Piloto , Ratos , Células THP-1
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(9): 1247-1257, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31136841

RESUMO

Bis(Monoacylglycero) Phosphate (BMP) is a unique phospholipid localized in late endosomes, a critical cellular compartment in low density lipoprotein (LDL)-cholesterol metabolism. In previous work, we demonstrated the important role of BMP in the regulation of macrophage cholesterol homeostasis. BMP exerts a protective role against the pro-apoptotic effect of oxidized LDL (oxLDL) by reducing the production of deleterious oxysterols. As the intracellular sterol traffic in macrophages is in part regulated by oxysterol binding protein (OSBP) and OSBP-related proteins (ORPs), we investigated the role of ORP11, localized at the Golgi-late endosomes interface, in the BMP-mediated protection from oxLDL/oxysterol cytotoxicity. Stably silencing of ORP11 in mouse RAW264.7 macrophages via a shRNA lentiviruses system had no effect on BMP production. However, ORP11 knockdown abrogated the protective action of BMP against oxLDL induced apoptosis. In oxLDL treated control cells, BMP enrichment was associated with reduced generation of 7-oxysterols, while these oxysterol species were abundant in the ORP11 knock-down cells. Of note, BMP enrichment in ORP11 knock-down cells was associated with a drastic increase in free cholesterol and linked to a decrease of cholesterol efflux. The expression of ATP-binding cassette-transporter G1 (ABCG1) was also reduced in the ORP11 knock-down cells. These observations demonstrate a cooperative function of OPR11 and BMP, in intracellular cholesterol trafficking in cultured macrophages. We suggest that BMP favors the egress of cholesterol from late endosomes via an ORP11-dependent mechanism, resulting in a reduced production of cytotoxic 7-oxysterols.


Assuntos
Lipoproteínas LDL/metabolismo , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Monoglicerídeos/metabolismo , Receptores de Esteroides/metabolismo , Animais , Apoptose , Colesterol/metabolismo , Humanos , Camundongos , Células RAW 264.7
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(10): 1257-1273, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305243

RESUMO

The 'cholesterol efflux capacity (CEC)' assay is a simple in vitro measure of the capacities of individual sera to promote the first step of the reverse cholesterol transport pathway, the delivery of cellular cholesterol to plasma HDL. This review describes the cell biology of this model and critically assesses its application as a marker of cardiovascular risk. We describe the pathways for cell cholesterol export, current cell models used in the CEC assay with their limitations and consider the contribution that measurement of serum CEC provides to our understanding of HDL function in vivo.


Assuntos
Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Colesterol/sangue , Doenças Cardiovasculares/metabolismo , HDL-Colesterol/sangue , Humanos , Transporte Proteico , Transdução de Sinais
9.
Biochimie ; 153: 232-237, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29704538

RESUMO

Oxidized LDL (OxLDL) that are enriched in products of lipid peroxidation including oxysterols have been shown to induce cellular oxidative stress and cytotoxicity therefore accelerating atheroma plaque formation. Upon oxLDL exposure of THP-1 macrophages, intracellular oxidation of LDL derived-cholesterol as well as endogenous cholesterol was increased. The oxysterols intracellularly produced were efficiently exported to HDL whereas apolipoprotein A1 was inefficient. These findings prompted us to investigate the consequences of modification of HDL by oxidation and glycation as observed in type 2 diabetes with respect to oxysterol and cholesterol efflux. We show that efflux of oxysterols was significantly impaired after in vitro oxidation and glycoxidation of HDL whereas glycation alone had no impact. Cholesterol efflux was only slightly decreased by oxHDL or glycoxidized HDL and not changed with glycated HDL. The defect of HDL towards oxysterol efflux was also observed with HDL isolated from diabetic subjects as compared to healthy controls. These findings support a deleterious cellular retention of oxysterols due to dysfunctional HDL in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Oxisteróis/metabolismo , Transporte Biológico , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/patologia , Feminino , Glucose/metabolismo , Humanos , Masculino , Oxirredução , Células THP-1
10.
Steroids ; 99(Pt B): 212-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25742736

RESUMO

Macrophages are well recognized as key pathophysiologic agents in many chronic inflammatory diseases, especially atherosclerosis. During atherogenesis process, low density lipoproteins (LDL) undergo oxidation (oxLDL) and become highly atherogenic as they induce a strong accumulation of cholesterol in subendothelial macrophages leading to the formation of foam cells, the major cellular component of fatty streaks. OxLDL are enriched in oxidation products of cholesterol called oxysterols involved in the regulation of cholesterol homeostasis, by their ability to induce cellular oxidative stress and cytotoxicity. Little is known about intracellular oxysterol production in macrophages. Using both radiochemical and mass analyzes, we showed that THP1 macrophages promote the intracellular oxidation of LDL derived-cholesterol as well as intracellular cholesterol, this later mechanism being enhanced by exposure with native or oxLDL. We demonstrated that in both THP1 and Raw 267.4 cells cholesterol oxidation occurs in the late endosomal compartment. Most oxysterols were produced by non-enzymatic routes (7-ketocholesterol and 7α/ß-hydroxycholesterol) but enzymatically formed 7α-, 27-hydroxycholesterol were also quantified. Incubation of THP1 macrophages with nLDL or oxLDL, induced a 2- and 100-fold increase in oxysterol production, respectively. Both oxysterols derived from LDL cholesterol and cellular cholesterol were readily exported to HDL whereas apoA1 was inefficient, showing that HDL plays a major role in the removal of excess oxysterols in THP1 macrophages.


Assuntos
Colesterol/metabolismo , Cetocolesteróis/metabolismo , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Androstenos/farmacologia , Animais , Apolipoproteína A-I/metabolismo , Células Cultivadas , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Espaço Intracelular/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Oxirredução/efeitos dos fármacos , Células RAW 264.7
11.
FASEB J ; 27(9): 3860-70, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23756648

RESUMO

Environmental contaminants are suspected to be involved in the epidemic incidence of metabolic disorders, food ingestion being a primarily route of exposure. We hypothesized that life-long consumption of a high-fat diet that contains low doses of pollutants will aggravate metabolic disorders induced by obesity itself. Mice were challenged from preconception throughout life with a high-fat diet containing pollutants commonly present in food (2,3,7,8-tetrachlorodibenzo-p-dioxin, polychlorinated biphenyl 153, diethylhexyl phthalate, and bisphenol A), added at low doses in the tolerable daily intake range. We measured several blood parameters, glucose and insulin tolerance, hepatic lipid accumulation, and gene expression in adult mice. Pollutant-exposed mice exhibited significant sex-dependent metabolic disorders in the absence of toxicity and weight gain. In males, pollutants increased the expression of hepatic genes (from 36 to 88%) encoding proteins related to cholesterol biosynthesis and decreased (40%) hepatic total cholesterol levels. In females, there was a marked deterioration of glucose tolerance, which may be related to the 2-fold induction of estrogen sulfotransferase and reduced expression of estrogen receptor α (25%) and estrogen target genes (>34%). Because of the very low doses of pollutants used in the mixture, these findings may have strong implications in terms of understanding the potential role of environmental contaminants in food in the development of metabolic diseases.


Assuntos
Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Compostos Benzidrílicos/toxicidade , Western Blotting , Peso Corporal/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fenóis/toxicidade , Bifenilos Policlorados/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Arterioscler Thromb Vasc Biol ; 33(8): 1803-11, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23788762

RESUMO

OBJECTIVE: Endosomal signature phospholipid bis(monoacylglycero)phosphate (BMP) has been involved in the regulation of cellular cholesterol homeostasis. Accumulation of BMP is a hallmark of lipid storage disorders and was recently reported as a noticeable feature of oxidized low-density lipoprotein-laden macrophages. This study was designed to delineate the consequences of macrophage BMP accumulation on intracellular cholesterol distribution, metabolism, and efflux and to unravel the underlying molecular mechanisms. APPROACH AND RESULTS: We have developed an experimental design to specifically increase BMP content in RAW 264.7 macrophages. After BMP accumulation, cell cholesterol distribution was markedly altered, despite no change in low-density lipoprotein uptake and hydrolysis, cholesterol esterification, or total cell cholesterol content. The expression of cholesterol-regulated genes sterol regulatory element-binding protein 2 and hydroxymethylglutaryl-coenzyme A reductase was decreased by 40%, indicative of an increase of endoplasmic reticulum-associated cholesterol. Cholesterol delivery to plasma membrane was reduced as evidenced by the 20% decrease of efflux by cyclodextrin. Functionally, BMP accumulation reduced cholesterol efflux to both apolipoprotein A1 and high-density lipoprotein by 40% and correlated with a 40% decrease in mRNA contents of ATP-binding cassette transporter A1, ATP-binding cassette transporter G1, and liver-X receptor α and ß. Foam cell formation induced by oxidized low-density lipoprotein exposure was exacerbated in BMP-enriched cells. CONCLUSIONS: The present work shows for the first time a strong functional link between BMP and cholesterol-regulating genes involved in both intracellular metabolism and efflux. We propose that accumulation of cellular BMP might contribute to the deregulation of cholesterol homeostasis in atheromatous macrophages.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , LDL-Colesterol/metabolismo , Lipoproteínas/metabolismo , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Monoglicerídeos/metabolismo , Receptores Nucleares Órfãos/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linhagem Celular , Endossomos/metabolismo , Células Espumosas/metabolismo , Expressão Gênica/fisiologia , Homeostase/fisiologia , Lipoproteínas/genética , Lipoproteínas LDL/metabolismo , Receptores X do Fígado , Camundongos , Receptores Nucleares Órfãos/genética , Placa Aterosclerótica/metabolismo
13.
Biochem Pharmacol ; 86(1): 115-21, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23542536

RESUMO

Atherosclerosis is a major cardiovascular complication of diseases associated with increased oxidative stress that favors oxidation of circulating low density lipoproteins (LDLs). Oxidized LDL (oxLDL) is considered as highly atherogenic as it induces a strong accumulation of cholesterol in subendothelial macrophages leading to the formation of foam cells and emergence of atherosclerotic plaque. OxLDL is enriched in oxidation products of cholesterol called oxysterols, some of which have been involved in the ability of oxLDL to induce cellular oxidative stress and cytotoxicity, mainly by apoptosis. Little is known about the possible contribution of cell-generated oxysterols toward LDL-associated oxysterols in cellular accumulation of oxysterols and related apoptosis. Using both radiochemical and mass analyzes, we showed that oxLDL greatly enhanced oxysterol production by RAW macrophages in comparison with unloaded cells or cells loaded with native LDL. Most oxysterols were produced by non-enzymatic routes (7-ketocholesterol and 7α/ß-hydroyxycholesterol) but enzymatically formed 7α-, 25- and 27-hydroxycholesterol were also quantified. Bis(monoacylglycero)phosphate (BMP) is a unique phospholipid preferentially found in late endosomes. We and others have highlighted the role of BMP in the regulation of intracellular cholesterol metabolism/traffic in macrophages. We here report that cellular BMP accumulation was associated with a significantly lower production of oxysterols upon oxLDL exposure. Of note, potent pro-apoptotic 7-ketocholesterol was the most markedly decreased. OxLDL-induced cell cytotoxicity and apoptosis were consistently attenuated in BMP-enriched cells. Taken together, our data suggest that BMP exerts a protective action against the pro-apoptotic effect of oxLDL via a reduced production of intracellular pro-apoptotic oxysterols.


Assuntos
Apoptose , Lipoproteínas LDL/metabolismo , Lisofosfolipídeos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Monoglicerídeos/metabolismo , Animais , Linhagem Celular , Humanos , Lipoproteínas LDL/farmacologia , Lisofosfolipídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Monoglicerídeos/farmacologia , Esteróis/biossíntese
14.
Lipids ; 45(8): 723-31, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20703822

RESUMO

Increased oxidative stress is associated with type-2 diabetes and related cardiovascular diseases, but oxidative modification of LDL has been partially characterized. Our aim was to compare the lipid and fatty acid composition as well as the redox status of LDL from diabetic patients and healthy subjects. First, to ensure that isolation of LDL by sequential ultracentrifugation did not result in lipid modifications, lipid composition and peroxide content were determined in LDL isolated either by ultracentrifugation or fast-protein liquid chromatography. Both methods resulted in similar concentrations of lipids, fatty acids, hydroxy-octadecadienoic acid (HODE) and malondialdehyde (MDA). Then, LDLs were isolated by ultracentrifugation from eight type-2 diabetic patients and eight control subjects. Compared to control LDL, diabetic LDL contained decreased cholesteryl esters and increased triglyceride concentrations. Ethanolamine plasmalogens decreased by 49%. Proportions of linoleic acid decreased in all lipid classes, while proportions of arachidonic acid increased in cholesteryl esters. Total HODE concentrations increased by 56%, 12- and 15-hydroxy-eicosatetraenoic acid by 161 and 86%, respectively, and MDA levels increased by twofold. alpha-Tocopherol concentrations, expressed relative to triglycerides, were lower in LDL from patients compared to controls, while gamma-tocopherol did not differ. Overall, LDL from type-2 diabetic patients displayed increased oxidative stress. Determination of hydroxylated fatty acids and ethanolamine plasmalogen depletion could be especially relevant in diabetes.


Assuntos
LDL-Colesterol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Peroxidação de Lipídeos/fisiologia , Cromatografia Líquida de Alta Pressão , Humanos , Masculino , Malondialdeído/metabolismo , Pessoa de Meia-Idade , Ultracentrifugação , Vitamina E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...