Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 261(1): 88-104, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26469285

RESUMO

We present in this study results from X-ray tomographic microscopy with synchrotron radiation performed both in attenuation and phase contrast modes on a limestone sample during two stages of water drying. No contrast agent was used in order to increase the X-ray attenuation by water. We show that only by using the phase contrast mode it is possible to achieve enough water content change resolution to investigate the drying process at the pore-scale. We performed 3D image analysis of the time-differential phase contrast tomogram. We show by the results of such analysis that it is possible to obtain a reliable characterization of the spatial redistribution of water in the resolved pore system in agreement with what expected from the theory of drying in porous media and from measurements performed with other approaches. We thus show the potential of X-ray phase contrast imaging for pore-scale investigations of reactive water transport processes which cannot be imaged by adding a contrast agent for exploiting the standard attenuation contrast imaging mode.

2.
J Microsc ; 241(3): 234-42, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21118227

RESUMO

Due to the development of integrated low-keV back-scattered electron detectors, it has become possible in focussed ion beam nanotomography to segment not only solid matter and porosity of hardened cement paste, but also to distinguish different phases within the solid matter. This paper illustrates a method that combines two different approaches for improving the contrast between different phases in the solid matrix of a cement paste. The first approach is based on the application of a specially developed 3D diffusion filter. The second approach is based on a modified data-acquisition procedure during focussed ion beam nanotomography. A pair of electron images is acquired for each slice in the focussed ion beam nanotomography dataset. The first image is captured immediately after ion beam milling; the second image is taken after a prolonged exposure to electron beam scanning. The acquisition of complementary focussed ion beam nanotomography datasets and processing the images with a 3D anisotropic diffusion filter allows distinguishing different phases within the hydration products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...