Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 1128, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608086

RESUMO

Modern cultivated Citrus species and varieties result from interspecific hybridization between four ancestral taxa. Among them, Citrus maxima and Citrus reticulata, closely associated with the pummelo and mandarin horticultural groups, respectively, were particularly important as the progenitors of sour and sweet oranges (Citrus aurantium and Citrus sinensis), grapefruits (Citrus paradisi), and hybrid types resulting from modern breeding programs (tangors, tangelos, and orangelos). The differentiation between the four ancestral taxa and the phylogenomic structure of modern varieties widely drive the phenotypic diversity's organization. In particular, strong phenotypic differences exist in the coloration and sweetness and represent important criteria for breeders. In this context, focusing on the genes of the sugar, carotenoid, and chlorophyll biosynthesis pathways, the aim of this work was to develop a set of diagnostic single-nucleotide polymorphism (SNP) markers to distinguish the ancestral haplotypes of C. maxima and C. reticulata and to provide information at the intraspecific diversity level (within C. reticulata or C. maxima). In silico analysis allowed the identification of 3,347 SNPs from selected genes. Among them, 1,024 were detected as potential differentiation markers between C. reticulata and C. maxima. A total of 115 SNPs were successfully developed using a competitive PCR technology. Their transferability among all Citrus species and the true citrus genera was very good, with only 0.87% of missing data. The ancestral alleles of the SNPs were identified, and we validated the usefulness of the developed markers for tracing the ancestral haplotype in large germplasm collections and sexually recombined progeny issued from the C. reticulata/C. maxima admixture gene pool. These markers will pave the way for targeted association studies based on ancestral haplotypes.

2.
J Plant Physiol ; 218: 94-99, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28802186

RESUMO

Combination of biotic and abiotic stress is a major challenge for crop and fruit production. Thus, identification of genes involved in cross-response to abiotic and biotic stress is of great importance for breeding superior genotypes. Lectins are glycan-binding proteins with a functions in the developmental processes as well as in the response to biotic and abiotic stress. In this work, a lectin like gene, namely ClLectin1, was characterized in Volkamer lemon and its expression was studied in plants exposed to either water stress, hormonal elicitors (JA, SA, ABA) or wounding to understand whether this gene may have a function in the response to multiple stress combination. Results showed that ClLectin1 has 100% homology with a L-type lectin gene from C. sinensis and the in silico study of the 5'UTR region showed the presence of cis-responsive elements to SA, DRE2 and ABA. ClLectin1 was rapidly induced by hormonal treatments and wounding, at local and systemic levels, suggesting an involvement in defence signalling pathways and a possible role as fast detection biomarker of biotic stress. On the other hand, the induction of ClLectin1 by water stress pointed out a role of the gene in the response to drought. The simultaneous response of ClLectin1 expression to water stress and SA treatment could be further investigated to assess whether a moderate drought stress may be useful to improve citrus performance by stimulating the SA-dependent response to biotic stress.


Assuntos
Citrus/fisiologia , Regulação da Expressão Gênica de Plantas , Lectinas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Água/metabolismo , Ácido Abscísico/metabolismo , Citrus/genética , Ciclopentanos/metabolismo , Secas , Lectinas/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA