Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(4-1): 044608, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37198778

RESUMO

We use numerical simulations to systematically investigate the vesicle dynamics in two-dimensional (2D) Taylor-Green vortex flow in the absence of inertial forces. Vesicles are highly deformable membranes encapsulating an incompressible fluid and they serve as numerical and experimental proxies for biological cells such as red blood cells. Vesicle dynamics has been studied in free-space or bounded shear, Poiseuille, and Taylor-Couette flows in 2D and 3D. Taylor-Green vortex are characterized with even more complicated properties than those flows such as nonuniform flow line curvature, shear gradient. We study the effects of two parameters on the vesicle dynamics: the ratio of the interior fluid viscosity to that of the exterior one and the ratio of the shear forces on the vesicle to the membrane stiffness (characterized by the capillary number). Vesicle deformability nonlinearly depends on these parameters. Although the study is in 2D, our findings contribute to the wide spectrum of intriguing vesicle dynamics: Vesicles migrate inwards and eventually rotate at the vortex center if they are sufficiently deformable. If not, then they migrate away from the vortex center and travel across the periodic arrays of vortices. The outward migration of a vesicle is a new phenomenon in Taylor-Green vortex flow and has not been observed in any other flows so far. Such cross-streamline migration of deformable particles can be utilized in several applications such as microfluidics for cell separation.

2.
Soft Matter ; 17(27): 6597-6602, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34259695

RESUMO

Experiments on autophoretic bimetallic nanorods propelling within a fuel of hydrogen peroxide show that tail-heavy swimmers preferentially orient upwards and ascend along inclined planes. We show that such gravitaxis is strongly facilitated by interactions with solid boundaries, allowing even ultraheavy microswimmers to climb nearly vertical surfaces. Theory and simulations show that the buoyancy or gravitational torque that tends to align the rods is reinforced by a fore-aft drag asymmetry induced by hydrodynamic interactions with the wall.

3.
Phys Rev Lett ; 123(17): 178004, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31702241

RESUMO

We explore the behavior of micron-scale autophoretic Janus (Au/Pt) rods, having various Au/Pt length ratios, swimming near a wall in an imposed background flow. We find that their ability to robustly orient and move upstream, i.e., to rheotax, depends strongly on the Au/Pt ratio, which is easily tunable in synthesis. Numerical simulations of swimming rods actuated by a surface slip show a similar rheotactic tunability when varying the location of the surface slip versus surface drag. The slip location determines whether swimmers are pushers (rear actuated), pullers (front actuated), or in between. Our simulations and modeling show that pullers rheotax most robustly due to their larger tilt angle to the wall, which makes them responsive to flow gradients. Thus, rheotactic response infers the nature of difficult to measure flow fields of an active particle, establishes its dependence on swimmer type, and shows how Janus rods can be tuned for flow responsiveness.

4.
Phys Rev E ; 96(2-1): 023102, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950627

RESUMO

We use a three-bead-spring model to investigate the dynamics of biflagellate microswimmers near a surface. While the primary dynamics and scattering are governed by geometric-dependent direct contact, the fluid flows generated by the swimmer locomotion are important in orienting it toward or away from the surface. Flagellar noise and in particular cell spinning about the main axis help a surface-trapped swimmer escape, whereas the time a swimmer spends at the surface depends on the incident angle. The dynamics results from a nuanced interplay of direct collisions, hydrodynamics, noise, and the swimmer geometry. We show that to correctly capture the dynamics of a biflagellate swimmer, minimal models need to resolve the shape asymmetry.


Assuntos
Flagelos/fisiologia , Modelos Biológicos , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/fisiologia , Elasticidade , Hidrodinâmica , Processamento de Imagem Assistida por Computador , Dispositivos Lab-On-A-Chip , Microscopia , Movimento , Propriedades de Superfície , Fatores de Tempo
5.
Phys Rev E ; 94(2-1): 022414, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27627341

RESUMO

Microswimmers such as bacteria perform random walks known as run-and-tumbles to move up chemoattractant gradients and as a result aggregate with others. It is also known that such micro-swimmers can self-organize into macroscopic patterns due to interactions with neighboring cells through the fluidic environment they live in. While the pattern formation resulting from chemotactic and hydrodynamic interactions separately and together have been previously investigated, the effect of the anisotropy in the tumbles of microswimmers has been unexplored. Here we show through linear analysis and full nonlinear simulations that the slight anisotropy in the individual swimmer tumbles can alter the collective pattern formation in nontrivial ways. We show that tumbling anisotropy diminishes the magnitude of the chemotactic aggregates but may result in more such aggregation peaks.

6.
Soft Matter ; 12(25): 5645-52, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27265340

RESUMO

Inert particles suspended in active fluids of self-propelled particles are known to often exhibit enhanced diffusion and novel coherent structures. Here we numerically investigate the dynamical behavior and self-organization in a system consisting of passive and actively rotating spheres of the same size. The particles interact through direct collisions and the fluid flows generated as they move. In the absence of passive particles, three states emerge in a binary mixture of spinning spheres depending on particle fraction: a dilute gas-like state where the rotors move chaotically, a phase-separated state where like-rotors move in lanes or vortices, and a jammed state where crystals continuously assemble, melt and move (K. Yeo, E. Lushi, and P. M. Vlahovska, Phys. Rev. Lett., 2015, 114, 188301). Passive particles added to the rotor suspension modify the system dynamics and pattern formation: while states identified in the pure active suspension still emerge, they occur at different densities and mixture proportions. The dynamical behavior of the inert particles is also non-trivially dependent on the system composition.

7.
Phys Rev Lett ; 114(18): 188301, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-26001020

RESUMO

We study, numerically, the collective dynamics of self-rotating nonaligning particles by considering a monolayer of spheres driven by constant clockwise or counterclockwise torques. We show that hydrodynamic interactions alter the emergence of large-scale dynamical patterns compared to those observed in dry systems. In dilute suspensions, the flow stirred by the rotors induces clustering of opposite-spin rotors, while at higher densities same-spin rotors phase separate. Above a critical rotor density, dynamic hexagonal crystals form. Our findings underscore the importance of inclusion of the many-body, long-range hydrodynamic interactions in predicting the phase behavior of active particles.

8.
Phys Rev Lett ; 115(25): 258102, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722946

RESUMO

Interactions between microorganisms and solid boundaries play an important role in biological processes, such as egg fertilization, biofilm formation, and soil colonization, where microswimmers move within a structured environment. Despite recent efforts to understand their origin, it is not clear whether these interactions can be understood as being fundamentally of hydrodynamic origin or hinging on the swimmer's direct contact with the obstacle. Using a combination of experiments and simulations, here we study in detail the interaction of the biflagellate green alga Chlamydomonas reinhardtii, widely used as a model puller microorganism, with convex obstacles, a geometry ideally suited to highlight the different roles of steric and hydrodynamic effects. Our results reveal that both kinds of forces are crucial for the correct description of the interaction of this class of flagellated microorganisms with boundaries.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Microalgas/fisiologia , Modelos Biológicos , Chlamydomonas reinhardtii/citologia , Hidrodinâmica , Microalgas/citologia , Natação
9.
Proc Natl Acad Sci U S A ; 111(27): 9733-8, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24958878

RESUMO

Concentrated suspensions of swimming microorganisms and other forms of active matter are known to display complex, self-organized spatiotemporal patterns on scales that are large compared with those of the individual motile units. Despite intensive experimental and theoretical study, it has remained unclear the extent to which the hydrodynamic flows generated by swimming cells, rather than purely steric interactions between them, drive the self-organization. Here we use the recent discovery of a spiral-vortex state in confined suspensions of Bacillus subtilis to study this issue in detail. Those experiments showed that if the radius of confinement in a thin cylindrical chamber is below a critical value, the suspension will spontaneously form a steady single-vortex state encircled by a counter-rotating cell boundary layer, with spiral cell orientation within the vortex. Left unclear, however, was the flagellar orientation, and hence the cell swimming direction, within the spiral vortex. Here, using a fast simulation method that captures oriented cell-cell and cell-fluid interactions in a minimal model of discrete particle systems, we predict the striking, counterintuitive result that in the presence of collectively generated fluid motion, the cells within the spiral vortex actually swim upstream against those flows. This prediction is then confirmed by the experiments reported here, which include measurements of flagella bundle orientation and cell tracking in the self-organized state. These results highlight the complex interplay between cell orientation and hydrodynamic flows in concentrated suspensions of microorganisms.


Assuntos
Bacillus subtilis/fisiologia , Natação , Flagelos/fisiologia , Modelos Biológicos
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(4 Pt 1): 040902, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23214522

RESUMO

In microswimmer suspensions locomotion necessarily generates fluid motion, and it is known that such flows can lead to collective behavior from unbiased swimming. We examine the complementary problem of how chemotaxis is affected by self-generated flows. A kinetic theory coupling run-and-tumble chemotaxis to the flows of collective swimming shows separate branches of chemotactic and hydrodynamic instabilities for isotropic suspensions, the first driving aggregation, the second producing increased orientational order in suspensions of "pushers" and maximal disorder in suspensions of "pullers." Nonlinear simulations show that hydrodynamic interactions can limit and modify chemotactically driven aggregation dynamics. In puller suspensions the dynamics form aggregates that are mutually repelling due to the nontrivial flows. In pusher suspensions chemotactic aggregation can lead to destabilizing flows that fragment the regions of aggregation.


Assuntos
Quimiotaxia , Natação , Algoritmos , Humanos , Hidrodinâmica , Cinética , Microfluídica , Modelos Estatísticos , Movimento (Física) , Movimento , Reologia , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...