Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(5): 109679, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38655197

RESUMO

Epilepsy affects millions globally with a significant portion exhibiting pharmacoresistance. Abnormal neuronal activity elevates brain lactate levels, which prompted the exploration of its receptor, the hydroxycarboxylic acid receptor 1 (HCAR1) known to downmodulate neuronal activity in physiological conditions. This study revealed that HCAR1-deficient mice (HCAR1-KO) exhibited lowered seizure thresholds, and increased severity and duration compared to wild-type mice. Hippocampal and whole-brain electrographic seizure analyses revealed increased seizure severity in HCAR1-KO mice, supported by time-frequency analysis. The absence of HCAR1 led to uncontrolled inter-ictal activity in acute hippocampal slices, replicated by lactate dehydrogenase A inhibition indicating that the activation of HCAR1 is closely associated with glycolytic output. However, synthetic HCAR1 agonist administration in an in vivo epilepsy model did not modulate seizures, likely due to endogenous lactate competition. These findings underscore the crucial roles of lactate and HCAR1 in regulating circuit excitability to prevent unregulated neuronal activity and terminate epileptic events.

2.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37662417

RESUMO

Rapid-eye-movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.

4.
Nat Neurosci ; 26(1): 116-130, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36550291

RESUMO

Corticothalamic pathways, responsible for the top-down control of the thalamus, have a canonical organization such that every cortical region sends output from both layer 6 (L6) and layer 5 (L5) to the thalamus. Here we demonstrate a qualitative, region-specific difference in the organization of mouse corticothalamic pathways. Specifically, L5 pyramidal cells of the frontal cortex, but not other cortical regions, establish monosynaptic connections with the inhibitory thalamic reticular nucleus (TRN). The frontal L5-TRN pathway parallels the L6-TRN projection but has distinct morphological and physiological features. The exact spike output of the L5-contacted TRN cells correlated with the level of cortical synchrony. Optogenetic perturbation of the L5-TRN connection disrupted the tight link between cortical and TRN activity. L5-driven TRN cells innervated thalamic nuclei involved in the control of frontal cortex activity. Our data show that frontal cortex functions require a highly specialized cortical control over intrathalamic inhibitory processes.


Assuntos
Núcleos Talâmicos , Tálamo , Camundongos , Animais , Núcleos Talâmicos/fisiologia , Tálamo/fisiologia , Células Piramidais , Lobo Frontal
5.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563419

RESUMO

For decades, numerous seminal studies have built our understanding of the locus coeruleus (LC), the vertebrate brain's principal noradrenergic system. Containing a numerically small but broadly efferent cell population, the LC provides brain-wide noradrenergic modulation that optimizes network function in the context of attentive and flexible interaction with the sensory environment. This review turns attention to the LC's roles during sleep. We show that these roles go beyond down-scaled versions of the ones in wakefulness. Novel dynamic assessments of noradrenaline signaling and LC activity uncover a rich diversity of activity patterns that establish the LC as an integral portion of sleep regulation and function. The LC could be involved in beneficial functions for the sleeping brain, and even minute alterations in its functionality may prove quintessential in sleep disorders.


Assuntos
Locus Cerúleo , Transtornos do Sono-Vigília , Humanos , Norepinefrina , Sono/fisiologia , Vigília/fisiologia
6.
Curr Biol ; 31(22): 5009-5023.e7, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34648731

RESUMO

To understand what makes sleep vulnerable in disease, it is useful to look at how wake-promoting mechanisms affect healthy sleep. Wake-promoting neuronal activity is inhibited during non-rapid-eye-movement sleep (NREMS). However, sensory vigilance persists in NREMS in animals and humans, suggesting that wake promotion could remain functional. Here, we demonstrate that consolidated mouse NREMS is a brain state with recurrent fluctuations of the wake-promoting neurotransmitter noradrenaline on the ∼50-s timescale in the thalamus. These fluctuations occurred around mean noradrenaline levels greater than the ones of quiet wakefulness, while noradrenaline (NA) levels declined steeply in REMS. They coincided with a clustering of sleep spindle rhythms in the forebrain and with heart-rate variations, both of which are correlates of sensory arousability. We addressed the origins of these fluctuations by using closed-loop optogenetic locus coeruleus (LC) activation or inhibition timed to moments of low and high spindle activity during NREMS. We could suppress, lock, or entrain sleep-spindle clustering and heart-rate variations, suggesting that both fore- and hindbrain-projecting LC neurons show coordinated infraslow activity variations in natural NREMS. Noradrenergic modulation of thalamic, but not cortical, circuits was required for sleep-spindle clustering and involved NA release into primary sensory and reticular thalamic nuclei that activated both α1- and ß-adrenergic receptors to cause slowly decaying membrane depolarizations. Noradrenergic signaling by LC constitutes a vigilance-promoting mechanism that renders mammalian NREMS vulnerable to disruption on the close-to-minute timescale through sustaining thalamocortical and autonomic sensory arousability. VIDEO ABSTRACT.


Assuntos
Sono , Vigília , Animais , Eletroencefalografia , Mamíferos , Camundongos , Norepinefrina , Prosencéfalo , Sono/fisiologia , Tálamo , Vigília/fisiologia
7.
Elife ; 102021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34713805

RESUMO

Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (Vm). These findings provide the first unbiased genetic validation of the role of Vm in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the Vm to very low values (-150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (-5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo.


Before a drug can have its desired effect, it must reach its target tissue or organ, and enter its cells. This is not easy because cells are surrounded by the plasma membrane, a fat-based barrier that separates the cell from its external environment. The plasma membrane contains proteins that act as channels, shuttling specific molecules in and out of the cell, and it also holds charge, with its inside surface being more negatively charged than its outside surface. Cell-penetrating peptides are short sequences of amino acids (the building blocks that form proteins) that carry positive charges. These positive charges allow them to cross the membrane easily, but it is not well understood how. To find out how cell-penetrating peptides cross the membrane, Trofimenko et al. attached them to dyes of different sizes. This revealed that the cell-penetrating peptides enter the cell through temporary holes called water pores, which measure about two nanometres across. The water pores form when the membrane becomes 'megapolarized', this is, when the difference in charge between the inside and the outside of the membrane becomes greater than normal. This can happen when the negative charge on the inside surface or the positive charge on the outer surface of the membrane increase. Megapolarization depends on potassium channels, which transport positive potassium ions outside the cell, making the outside of the membrane positive. When cell-penetrating peptides arrive at the outer surface of the cell near potassium channels, they make it even more positive. This increases the charge difference between the inside and the outside of the cell, allowing water pores to form. Once the peptides pass through the pores, the charge difference between the inside and the outside of the cell membrane dissipates, and the pores collapse. Drug developers are experimenting with attaching cell-penetrating peptides to drugs to help them get inside their target cells. Currently there are several experimental medications of this kind in clinical trials. Understanding how these peptides gain entry, and what size of molecule they could carry with them, provides solid ground for further drug development.


Assuntos
Peptídeos Penetradores de Células/genética , Canais de Potássio/genética , Animais , Linhagem Celular , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Células HeLa , Humanos , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio/metabolismo , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Peixe-Zebra
8.
Science ; 373(6560): eabj2685, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516796

RESUMO

Although traumatic brain injury (TBI) acutely disrupts the cortex, most TBI-related disabilities reflect secondary injuries that accrue over time. The thalamus is a likely site of secondary damage because of its reciprocal connections with the cortex. Using a mouse model of mild TBI (mTBI), we found a chronic increase in C1q expression specifically in the corticothalamic system. Increased C1q expression colocalized with neuron loss and chronic inflammation and correlated with disruption in sleep spindles and emergence of epileptic activities. Blocking C1q counteracted these outcomes, suggesting that C1q is a disease modifier in mTBI. Single-nucleus RNA sequencing demonstrated that microglia are a source of thalamic C1q. The corticothalamic circuit could thus be a new target for treating TBI-related disabilities.


Assuntos
Lesões Encefálicas/complicações , Complemento C1q/fisiologia , Fases do Sono , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/fisiopatologia , Tálamo/fisiopatologia , Animais , Lesões Encefálicas/fisiopatologia , Complemento C1q/genética , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Camundongos , Microglia/metabolismo , Tálamo/metabolismo
10.
Elife ; 102021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34227936

RESUMO

Frequent nightly arousals typical for sleep disorders cause daytime fatigue and present health risks. As such arousals are often short, partial, or occur locally within the brain, reliable characterization in rodent models of sleep disorders and in human patients is challenging. We found that the EEG spectral composition of non-rapid eye movement sleep (NREMS) in healthy mice shows an infraslow (~50 s) interval over which microarousals appear preferentially. NREMS could hence be vulnerable to abnormal arousals on this time scale. Chronic pain is well-known to disrupt sleep. In the spared nerve injury (SNI) mouse model of chronic neuropathic pain, we found more numerous local cortical arousals accompanied by heart rate increases in hindlimb primary somatosensory, but not in prelimbic, cortices, although sleep macroarchitecture appeared unaltered. Closed-loop mechanovibrational stimulation further revealed higher sensory arousability. Chronic pain thus preserved conventional sleep measures but resulted in elevated spontaneous and evoked arousability. We develop a novel moment-to-moment probing of NREMS vulnerability and propose that chronic pain-induced sleep complaints arise from perturbed arousability.


Assuntos
Nível de Alerta/fisiologia , Sistema Nervoso Autônomo , Neuralgia , Sono REM/fisiologia , Vigília/fisiologia , Animais , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Camundongos , Sono/fisiologia , Distúrbios do Início e da Manutenção do Sono
11.
Cell Rep ; 31(10): 107747, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521272

RESUMO

As we navigate in space, external landmarks and internal information guide our movement. Circuit and synaptic mechanisms that integrate these cues with head-direction (HD) signals remain, however, unclear. We identify an excitatory synaptic projection from the presubiculum (PreS) and the multisensory-associative retrosplenial cortex (RSC) to the anterodorsal thalamic reticular nucleus (TRN), so far classically implied in gating sensory information flow. In vitro, projections to TRN involve AMPA/NMDA-type glutamate receptors that initiate TRN cell burst discharge and feedforward inhibition of anterior thalamic nuclei. In vivo, chemogenetic anterodorsal TRN inhibition modulates PreS/RSC-induced anterior thalamic firing dynamics, broadens the tuning of thalamic HD cells, and leads to preferential use of allo- over egocentric search strategies in the Morris water maze. TRN-dependent thalamic inhibition is thus an integral part of limbic navigational circuits wherein it coordinates external sensory and internal HD signals to regulate the choice of search strategies during spatial navigation.


Assuntos
Cabeça/fisiologia , Navegação Espacial/fisiologia , Núcleos Talâmicos/fisiologia , Animais , Camundongos
12.
Physiol Rev ; 100(2): 805-868, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31804897

RESUMO

Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.


Assuntos
Ondas Encefálicas , Encéfalo/fisiopatologia , Cognição , Doenças do Sistema Nervoso/fisiopatologia , Periodicidade , Fases do Sono , Transtornos do Sono-Vigília/fisiopatologia , Animais , Atenção , Encéfalo/metabolismo , Humanos , Inteligência , Memória , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/psicologia , Plasticidade Neuronal , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/metabolismo , Transtornos do Sono-Vigília/psicologia , Fatores de Tempo
13.
Curr Biol ; 29(24): R1310-R1312, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31846678

RESUMO

Waking up requires excitation of the brain's wake centers. A new study shows that synaptic inhibition of sleep centers also induces wakefulness. This inhibition, driven by lateral hypothalamic GABAergic neurons, may coordinate sleep-wake behavior with stress, motivation and energy balance.


Assuntos
Região Hipotalâmica Lateral , Área Pré-Óptica , Nível de Alerta , Sono , Vigília
14.
Front Neurosci ; 13: 576, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231186

RESUMO

In spite of the uniform appearance of sleep as a behavior, the sleeping brain does not produce electrical activities in unison. Different types of brain rhythms arise during sleep and vary between layers, areas, or from one functional system to another. Local heterogeneity of such activities, here referred to as local sleep, overturns fundamental tenets of sleep as a globally regulated state. However, little is still known about the neuronal circuits involved and how they can generate their own specifically-tuned sleep patterns. NREM sleep patterns emerge in the brain from interplay of activity between thalamic and cortical networks. Within this fundamental circuitry, it now turns out that the thalamic reticular nucleus (TRN) acts as a key player in local sleep control. This is based on a marked heterogeneity of the TRN in terms of its cellular and synaptic architecture, which leads to a regional diversity of NREM sleep hallmarks, such as sleep spindles, delta waves and slow oscillations. This provides first evidence for a subcortical circuit as a determinant of cortical local sleep features. Here, we review novel cellular and functional insights supporting TRN heterogeneity and how these elements come together to account for local NREM sleep. We also discuss open questions arising from these studies, focusing on mechanisms of sleep regulation and the role of local sleep in brain plasticity and cognitive functions.

15.
JCI Insight ; 4(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31045576

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually gated channels that are operated by voltage and by neurotransmitters via the cAMP system. cAMP-dependent HCN regulation has been proposed to play a key role in regulating circuit behavior in the thalamus. By analyzing a knockin mouse model (HCN2EA), in which binding of cAMP to HCN2 was abolished by 2 amino acid exchanges (R591E, T592A), we found that cAMP gating of HCN2 is essential for regulating the transition between the burst and tonic modes of firing in thalamic dorsal-lateral geniculate (dLGN) and ventrobasal (VB) nuclei. HCN2EA mice display impaired visual learning, generalized seizures of thalamic origin, and altered NREM sleep properties. VB-specific deletion of HCN2, but not of HCN4, also induced these generalized seizures of the absence type, corroborating a key role of HCN2 in this particular nucleus for controlling consciousness. Together, our data define distinct pathological phenotypes resulting from the loss of cAMP-mediated gating of a neuronal HCN channel.


Assuntos
AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Convulsões/metabolismo , Animais , Comportamento Animal , Epilepsia/metabolismo , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Neurônios/metabolismo , Canais de Potássio , Tálamo/metabolismo , Transcriptoma
16.
Handb Exp Pharmacol ; 253: 125-151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29687163

RESUMO

Optogenetic tools have revolutionized insights into the fundamentals of brain function. This is particularly true for our current understanding of sleep-wake regulation and sleep rhythms. This is illustrated here through a comprehensive and step-by-step review over the major brain areas involved in transitions between sleep and wake states and in sleep rhythmogenesis.


Assuntos
Optogenética , Vigília , Encéfalo , Sono/fisiologia
17.
Elife ; 72018 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-30583750

RESUMO

Sleep affects brain activity globally, but many cortical sleep waves are spatially confined. Local rhythms serve cortical area-specific sleep needs and functions; however, mechanisms controlling locality are unclear. We identify the thalamic reticular nucleus (TRN) as a source for local, sensory-cortex-specific non-rapid-eye-movement sleep (NREMS) in mouse. Neurons in optogenetically identified sensory TRN sectors showed stronger repetitive burst discharge compared to non-sensory TRN cells due to higher activity of the low-threshold Ca2+ channel CaV3.3. Major NREMS rhythms in sensory but not non-sensory cortical areas were regulated in a CaV3.3-dependent manner. In particular, NREMS in somatosensory cortex was enriched in fast spindles, but switched to delta wave-dominated sleep when CaV3.3 channels were genetically eliminated or somatosensory TRN cells chemogenetically hyperpolarized. Our data indicate a previously unrecognized heterogeneity in a powerful forebrain oscillator that contributes to sensory-cortex-specific and dually regulated NREMS, enabling local sleep regulation according to use- and experience-dependence.


Assuntos
Sono , Córtex Somatossensorial/fisiologia , Núcleos Talâmicos/fisiologia , Potenciais de Ação , Animais , Ondas Encefálicas , Canais de Cálcio Tipo T/metabolismo , Camundongos , Optogenética
18.
Sci Rep ; 7(1): 12271, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947779

RESUMO

Thalamus and cortex represent a highly integrated processing unit that elaborates sensory representations. Interposed between cortex and thalamus, the nucleus Reticularis thalami (nRt) receives strong cortical glutamatergic input and mediates top-down inhibitory feedback to thalamus. Despite growing appreciation that the nRt is integral for thalamocortical functions from sleep to attentional wakefulness, we still face considerable gaps in the synaptic bases for cortico-nRt communication and plastic regulation. Here, we examined modulation of nRt excitability by cortical synaptic drive in Ntsr1-Cre x ChR2tg/+ mice expressing Channelrhodopsin2 in layer 6 corticothalamic cells. We found that cortico-nRt synapses express a major portion of NMDA receptors containing the GluN2C subunit (GluN2C-NMDARs). Upon repetitive photoactivation (10 Hz trains), GluN2C-NMDARs induced a long-term increase in nRt excitability involving a potentiated recruitment of T-type Ca2+ channels. In anaesthetized mice, analogous stimulation of cortical afferents onto nRt produced long-lasting changes in cortical local field potentials (LFPs), with delta oscillations being augmented at the expense of slow oscillations. This shift in LFP spectral composition was sensitive to NMDAR blockade in the nRt. Our data reveal a novel mechanism involving plastic modification of synaptically recruited T-type Ca2+ channels and nRt bursting and indicate a critical role for GluN2C-NMDARs in thalamocortical rhythmogenesis.


Assuntos
Córtex Cerebral/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Tálamo/fisiologia , Animais , Canais de Cálcio/metabolismo , Camundongos
19.
J Vis Exp ; (126)2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28809834

RESUMO

Three vigilance states dominate mammalian life: wakefulness, non-rapid eye movement (non-REM) sleep, and REM sleep. As more neural correlates of behavior are identified in freely moving animals, this three-fold subdivision becomes too simplistic. During wakefulness, ensembles of global and local cortical activities, together with peripheral parameters such as pupillary diameter and sympathovagal balance, define various degrees of arousal. It remains unclear the extent to which sleep also forms a continuum of brain states-within which the degree of resilience to sensory stimuli and arousability, and perhaps other sleep functions, vary gradually-and how peripheral physiological states co-vary. Research advancing the methods to monitor multiple parameters during sleep, as well as attributing to constellations of these functional attributes, is central to refining our understanding of sleep as a multifunctional process during which many beneficial effects must be executed. Identifying novel parameters characterizing sleep states will open opportunities for novel diagnostic avenues in sleep disorders. We present a procedure to describe dynamic variations of mouse non-REM sleep states via the combined monitoring and analysis of electroencephalogram (EEG)/electrocorticogram (ECoG), electromyogram (EMG), and electrocardiogram (ECG) signals using standard polysomnographic recording techniques. Using this approach, we found that mouse non-REM sleep is organized into cycles of coordinated neural and cardiac oscillations that generate successive 25-s intervals of high and low fragility to external stimuli. Therefore, central and autonomic nervous systems are coordinated to form behaviorally distinct sleep states during consolidated non-REM sleep. We present surgical manipulations for polysomnographic (i.e., EEG/EMG combined with ECG) monitoring to track these cycles in the freely sleeping mouse, the analysis to quantify their dynamics, and the acoustic stimulation protocols to assess their role in the likelihood of waking up. Our approach has already been extended to human sleep and promises to unravel common organizing principles of non-REM sleep states in mammals.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/métodos , Eletromiografia/métodos , Frequência Cardíaca/fisiologia , Sono/fisiologia , Animais , Encéfalo/cirurgia , Eletrocorticografia/métodos , Humanos , Camundongos Endogâmicos C57BL , Polissonografia/métodos , Sono REM/fisiologia , Vigília/fisiologia
20.
Sci Adv ; 3(2): e1602026, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28246641

RESUMO

Rodents sleep in bouts lasting minutes; humans sleep for hours. What are the universal needs served by sleep given such variability? In sleeping mice and humans, through monitoring neural and cardiac activity (combined with assessment of arousability and overnight memory consolidation, respectively), we find a previously unrecognized hallmark of sleep that balances two fundamental yet opposing needs: to maintain sensory reactivity to the environment while promoting recovery and memory consolidation. Coordinated 0.02-Hz oscillations of the sleep spindle band, hippocampal ripple activity, and heart rate sequentially divide non-rapid eye movement (non-REM) sleep into offline phases and phases of high susceptibility to external stimulation. A noise stimulus chosen such that sleeping mice woke up or slept through at comparable rates revealed that offline periods correspond to raising, whereas fragility periods correspond to declining portions of the 0.02-Hz oscillation in spindle activity. Oscillations were present throughout non-REM sleep in mice, yet confined to light non-REM sleep (stage 2) in humans. In both species, the 0.02-Hz oscillation predominated over posterior cortex. The strength of the 0.02-Hz oscillation predicted superior memory recall after sleep in a declarative memory task in humans. These oscillations point to a conserved function of mammalian non-REM sleep that cycles between environmental alertness and internal memory processing in 20- to 25-s intervals. Perturbed 0.02-Hz oscillations may cause memory impairment and ill-timed arousals in sleep disorders.


Assuntos
Relógios Biológicos , Ondas Encefálicas , Coração/fisiopatologia , Hipocampo/fisiopatologia , Memória , Transtornos do Sono-Vigília/fisiopatologia , Sono REM , Animais , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...