Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7183, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37935675

RESUMO

Knowledge of x-ray free electron lasers' (XFELs) pulse characteristics delivered to a sample is crucial for ensuring high-quality x-rays for scientific experiments. XFELs' self-amplified spontaneous emission process causes spatial and spectral variations in x-ray pulses entering a sample, which leads to measurement uncertainties for experiments relying on multiple XFEL pulses. Accurate in-situ measurements of x-ray wavefront and energy spectrum incident upon a sample poses challenges. Here we address this by developing a virtual diagnostics framework using an artificial neural network (ANN) to predict x-ray photon beam properties from electron beam properties. We recorded XFEL electron parameters while adjusting the accelerator's configurations and measured the resulting x-ray wavefront and energy spectrum shot-to-shot. Training the ANN with this data enables effective prediction of single-shot or average x-ray beam output based on XFEL undulator and electron parameters. This demonstrates the potential of utilizing ANNs for virtual diagnostics linking XFEL electron and photon beam properties.

2.
Nat Commun ; 14(1): 3384, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37291130

RESUMO

Femtosecond pump-probe spectroscopy using ultrafast optical and infrared pulses has become an essential tool to discover and understand complex electronic and structural dynamics in solvated molecular, biological, and material systems. Here we report the experimental realization of an ultrafast two-color X-ray pump X-ray probe transient absorption experiment performed in solution. A 10 fs X-ray pump pulse creates a localized excitation by removing a 1s electron from an Fe atom in solvated ferro- and ferricyanide complexes. Following the ensuing Auger-Meitner cascade, the second X-ray pulse probes the Fe 1s → 3p transitions in resultant novel core-excited electronic states. Careful comparison of the experimental spectra with theory, extracts +2 eV shifts in transition energies per valence hole, providing insight into correlated interactions of valence 3d with 3p and deeper-lying electrons. Such information is essential for accurate modeling and predictive synthesis of transition metal complexes relevant for applications ranging from catalysis to information storage technology. This study demonstrates the experimental realization of the scientific opportunities possible with the continued development of multicolor multi-pulse X-ray spectroscopy to study electronic correlations in complex condensed phase systems.


Assuntos
Complexos de Coordenação , Espectroscopia por Absorção de Raios X , Raios X
3.
Opt Express ; 30(24): 43655-43663, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523059

RESUMO

We present a method to accurately control the photon energies for hard X-ray Self-seeding schemes with a single crystal monochromator in transmissive geometry. The energy calibration is performed by measuring which pairs of the machine pitch and yaw angles for different crystallographic planes reflect the X-ray at the same wavelength. The free parameters of an analytical formula for the self-seeding energies are determined by fitting the observed intersections and the normalized derivative with respect to the pitch and yaw angles in the observed intersections. The method requires a hard X-ray spectrometer, but it does not rely on its absolute energy calibration. Instead, identifying the self-seeded energies above the SASE background or the monochromatic notches within the SASE bandwidth is sufficient for the calibration.

4.
Nat Commun ; 13(1): 7170, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418902

RESUMO

The concomitant motion of electrons and nuclei on the femtosecond time scale marks the fate of chemical and biological processes. Here we demonstrate the ability to initiate and track the ultrafast electron rearrangement and chemical bond breaking site-specifically in real time for the carbon monoxide diatomic molecule. We employ a local resonant x-ray pump at the oxygen atom and probe the chemical shifts of the carbon core-electron binding energy. We observe charge redistribution accompanying core-excitation followed by Auger decay, eventually leading to dissociation and hole trapping at one site of the molecule. The presented technique is general in nature with sensitivity to chemical environment changes including transient electronic excited state dynamics. This work provides a route to investigate energy and charge transport processes in more complex systems by tracking selective chemical bond changes on their natural timescale.


Assuntos
Monóxido de Carbono , Diatomáceas , Humanos , Núcleo Celular , Aberrações Cromossômicas , Eletrônica
5.
Sci Rep ; 12(1): 3253, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228548

RESUMO

X-ray Free Electron Lasers provide femtosecond x-ray pulses with narrow bandwidth and unprecedented peak brightness. Special modes of operation have been developed to deliver double pulses for x-ray pump, x-ray probe experiments. However, the longest delay between the two pulses achieved with existing single bucket methods is less than 1 picosecond, thus preventing the exploration of longer time-scale dynamics. We present a novel two-bucket scheme covering delays from 350 picoseconds to hundreds of nanoseconds in discrete steps of 350 picoseconds. Performance for each pulse can be similar to the one in a single pulse operation. The method has been experimentally tested with the Linac Coherent Light Source (LCLS-I) and the copper linac with LCLS-II hard x-ray undulators.

6.
Proc Natl Acad Sci U S A ; 119(12): e2119616119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290124

RESUMO

Coherent nonlinear spectroscopies and imaging in the X-ray domain provide direct insight into the coupled motions of electrons and nuclei with resolution on the electronic length scale and timescale. The experimental realization of such techniques will strongly benefit from access to intense, coherent pairs of femtosecond X-ray pulses. We have observed phase-stable X-ray pulse pairs containing more than 3 × 107 photons at 5.9 keV (2.1 Å) with ∼1 fs duration and 2 to 5 fs separation. The highly directional pulse pairs are manifested by interference fringes in the superfluorescent and seeded stimulated manganese Kα emission induced by an X-ray free-electron laser. The fringes constitute the time-frequency X-ray analog of Young's double-slit interference, allowing for frequency domain X-ray measurements with attosecond time resolution.

7.
Science ; 375(6578): 285-290, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34990213

RESUMO

In quantum systems, coherent superpositions of electronic states evolve on ultrafast time scales (few femtoseconds to attoseconds; 1 attosecond = 0.001 femtoseconds = 10-18 seconds), leading to a time-dependent charge density. Here we performed time-resolved measurements using attosecond soft x-ray pulses produced by a free-electron laser, to track the evolution of a coherent core-hole excitation in nitric oxide. Using an additional circularly polarized infrared laser pulse, we created a clock to time-resolve the electron dynamics and demonstrated control of the coherent electron motion by tuning the photon energy of the x-ray pulse. Core-excited states offer a fundamental test bed for studying coherent electron dynamics in highly excited and strongly correlated matter.

8.
Phys Rev Lett ; 126(10): 104802, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33784160

RESUMO

We report the demonstration of optical compression of an electron beam and the production of controllable trains of femtosecond, soft x-ray pulses with the Linac Coherent Light Source (LCLS) free-electron laser (FEL). This is achieved by enhanced self-amplified spontaneous emission with a 2 µm laser and a dechirper device. Optical compression was achieved by modulating the energy of an electron beam with the laser and then compressing with a chicane, resulting in high current spikes on the beam which we observe to lase. A dechirper was then used to selectively control the lasing region of the electron beam. Field autocorrelation measurements indicate a train of pulses, and we find that the number of pulses within the train can be controlled (from 1 to 5 pulses) by varying the dechirper position and undulator taper. These results are a step toward attosecond spectroscopy with x-ray FELs as well as future FEL schemes relying on optical compression of an electron beam.

9.
Nat Commun ; 12(1): 1672, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723266

RESUMO

X-ray free-electron lasers (XFELs) enable obtaining novel insights in structural biology. The recently available MHz repetition rate XFELs allow full data sets to be collected in shorter time and can also decrease sample consumption. However, the microsecond spacing of MHz XFEL pulses raises new challenges, including possible sample damage induced by shock waves that are launched by preceding pulses in the sample-carrying jet. We explored this matter with an X-ray-pump/X-ray-probe experiment employing haemoglobin microcrystals transported via a liquid jet into the XFEL beam. Diffraction data were collected using a shock-wave-free single-pulse scheme as well as the dual-pulse pump-probe scheme. The latter, relative to the former, reveals significant degradation of crystal hit rate, diffraction resolution and data quality. Crystal structures extracted from the two data sets also differ. Since our pump-probe attributes were chosen to emulate EuXFEL operation at its 4.5 MHz maximum pulse rate, this prompts concern about such data collection.


Assuntos
Hemoglobinas/química , Hemoglobinas/efeitos da radiação , Injeções a Jato/métodos , Lasers , Cristalografia por Raios X , Elétrons , Humanos , Injeções a Jato/instrumentação , Técnicas de Sonda Molecular , Raios X
10.
Commun Chem ; 4(1): 119, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36697819

RESUMO

Short-wavelength free-electron lasers with their ultrashort pulses at high intensities have originated new approaches for tracking molecular dynamics from the vista of specific sites. X-ray pump X-ray probe schemes even allow to address individual atomic constituents with a 'trigger'-event that preludes the subsequent molecular dynamics while being able to selectively probe the evolving structure with a time-delayed second X-ray pulse. Here, we use a linearly polarized X-ray photon to trigger the photolysis of a prototypical chiral molecule, namely trifluoromethyloxirane (C3H3F3O), at the fluorine K-edge at around 700 eV. The created fluorine-containing fragments are then probed by a second, circularly polarized X-ray pulse of higher photon energy in order to investigate the chemically shifted inner-shell electrons of the ionic mother-fragment for their stereochemical sensitivity. We experimentally demonstrate and theoretically support how two-color X-ray pump X-ray probe experiments with polarization control enable XFELs as tools for chiral recognition.

11.
Phys Rev Lett ; 125(3): 037404, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745427

RESUMO

Kß x-ray emission spectroscopy is a powerful probe for electronic structure analysis of 3d transition metal systems and their ultrafast dynamics. Selectively enhancing specific spectral regions would increase this sensitivity and provide fundamentally new insights. Recently we reported the observation and analysis of Kα amplified spontaneous x-ray emission from Mn solutions using an x-ray free-electron laser to create the 1s core-hole population inversion [Kroll et al., Phys. Rev. Lett. 120, 133203 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.133203]. To apply this new approach to the chemically more sensitive but much weaker Kß x-ray emission lines requires a mechanism to outcompete the dominant amplification of the Kα emission. Here we report the observation of seeded amplified Kß x-ray emission from a NaMnO_{4} solution using two colors of x-ray free-electron laser pulses, one to create the 1s core-hole population inversion and the other to seed the amplified Kß emission. Comparing the observed seeded amplified Kß emission signal with that from conventional Kß emission into the same solid angle, we obtain a signal enhancement of more than 10^{5}. Our findings are the first important step of enhancing and controlling the emission of selected final states of the Kß spectrum with applications in chemical and materials science.

12.
Proc Natl Acad Sci U S A ; 117(27): 15511-15516, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571923

RESUMO

Oscillators are at the heart of optical lasers, providing stable, transform-limited pulses. Until now, laser oscillators have been available only in the infrared to visible and near-ultraviolet (UV) spectral region. In this paper, we present a study of an oscillator operating in the 5- to 12-keV photon-energy range. We show that, using the [Formula: see text] line of transition metal compounds as the gain medium, an X-ray free-electron laser as a periodic pump, and a Bragg crystal optical cavity, it is possible to build X-ray oscillators producing intense, fully coherent, transform-limited pulses. As an example, we consider the case of a copper nitrate gain medium generating ∼ 5 × [Formula: see text] photons per pulse with 37-fs pulse length and 48-meV spectral resolution at 8-keV photon energy. Our theoretical study and simulation of this system show that, because of the very large gain per pass, the oscillator saturates and reaches full coherence in four to six optical-cavity transits. We discuss the feasibility and design of the X-ray optical cavity and other parts of the oscillator needed for its realization, opening the way to extend X-ray-based research beyond current capabilities.

13.
Sci Rep ; 10(1): 9799, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555209

RESUMO

Transverse deflecting structures (TDSs) are widely used in accelerator physics to measure the longitudinal density of particle bunches. When used in combination with a dispersive section, the whole longitudinal phase space density can be imaged. At the Linac Coherent Light Source (LCLS), the installation of such a device downstream of the undulators enables the reconstruction of the X-ray temporal intensity profile by comparing longitudinal phase space distributions with lasing on and lasing off. However, the resolution of this TDS is limited to around 1 fs rms (root mean square), and therefore, it is not possible to resolve single self-amplified spontaneous emission (SASE) spikes within an X-ray photon pulse. By combining the power spectrum from a high resolution photon spectrometer and the temporal structure from the TDS, the overall resolution is enhanced, thus allowing the observation of temporal, single SASE spikes. The combined data from the spectrometer and the TDS is analysed using an iterative algorithm to obtain the actual intensity profile. In this paper, we present some improvements to the reconstruction algorithm as well as real data taken at LCLS.

14.
Phys Rev Lett ; 124(13): 134801, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302180

RESUMO

Microbunching instability (MBI) driven by beam collective effects is known to be detrimental to high-brightness storage rings, linacs, and free-electron lasers (FELs). One known way to suppress this instability is to induce a small amount of energy spread to an electron beam by a laser heater. The distribution of the induced energy spread greatly affects MBI suppression and can be controlled by shaping the transverse profile of the heater laser. Here, we present the first experimental demonstration of effective MBI suppression using a LG_{01} transverse laser mode and compare the improved results with respect to traditional Gaussian transverse laser mode at the Linac Coherent Light Source. The effects on MBI suppression are characterized by multiple downstream measurements, including longitudinal phase space analysis and coherent radiation spectroscopy. We also discuss the role of LG_{01} shaping in soft x-ray self-seeded FEL emission, one of the most advanced operation modes of a FEL for which controlled suppression of MBI is critical.

15.
Sci Rep ; 10(1): 5961, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249769

RESUMO

One of the key challenges in scientific researches based on free-electron lasers (FELs) is the characterization of the coherence time of the ultra-fast hard x-ray pulse, which fundamentally influences the interaction process between x-rays and materials. Conventional optical methods, based on autocorrelation, are very difficult to realize due to the lack of mirrors. Here, we experimentally demonstrate a novel method which yields a coherence time of 174.7 attoseconds for the 6.92 keV FEL pulses at the Linac Coherent Light Source. In our experiment, a phase shifter is adopted to control the cross-correlation between x-ray and microbunched electrons. This approach provides critical diagnostics for the temporal coherence of x-ray FELs and is universal for general machine parameters; applicable for wide range of photon energy, radiation brightness, repetition rate and FEL pulse duration.

16.
Nat Commun ; 11(1): 1814, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286284

RESUMO

X-ray free-electron lasers (XFELs) enable crystallographic structure determination beyond the limitations imposed upon synchrotron measurements by radiation damage. The need for very short XFEL pulses is relieved through gating of Bragg diffraction by loss of crystalline order as damage progresses, but not if ionization events are spatially non-uniform due to underlying elemental distributions, as in biological samples. Indeed, correlated movements of iron and sulfur ions were observed in XFEL-irradiated ferredoxin microcrystals using unusually long pulses of 80 fs. Here, we report a femtosecond time-resolved X-ray pump/X-ray probe experiment on protein nanocrystals. We observe changes in the protein backbone and aromatic residues as well as disulfide bridges. Simulations show that the latter's correlated structural dynamics are much slower than expected for the predicted high atomic charge states due to significant impact of ion caging and plasma electron screening. This indicates that dense-environment effects can strongly affect local radiation damage-induced structural dynamics.


Assuntos
Proteínas de Bactérias/química , Elétrons , Lasers , Dissulfetos/química , Enxofre/química , Raios X
17.
Nature ; 578(7795): 386-391, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32042171

RESUMO

Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales1-3. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation4-7. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters8,9, multilayer mirrors10 and manipulation of the driving field11. However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules12,13. Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot14-16. Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser17. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers.

18.
Phys Chem Chem Phys ; 22(5): 2704-2712, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31793561

RESUMO

The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements.

19.
Phys Rev Lett ; 123(21): 214801, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809147

RESUMO

Electron beams with a sinusoidal energy modulation have the potential to emit subfemtosecond x-ray pulses in a free-electron laser. An energy modulation can be generated by overlapping a powerful infrared laser with an electron beam in a magnetic wiggler. We report on a new infrared source for this modulation, coherent radiation from the electron beam itself. In this self-modulation process, the current spike on the tail of the electron beam radiates coherently at the resonant wavelength of the wiggler, producing a six-period carrier-envelope-phase (CEP)-stable infrared field with gigawatt power. This field creates a few MeV, phase-stable modulation in the electron-beam core. The modulated electron beam is immediately useful for generating subfemtosecond x-ray pulses at any machine repetition rate, and the CEP-stable infrared field may find application as an experimental pump or timing diagnostic.

20.
Nat Commun ; 10(1): 5289, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754109

RESUMO

Resonant X-ray absorption, where an X-ray photon excites a core electron into an unoccupied valence state, is an essential process in many standard X-ray spectroscopies. With increasing X-ray intensity, the X-ray absorption strength is expected to become nonlinear. Here, we report the onset of such a nonlinearity in the resonant X-ray absorption of magnetic Co/Pd multilayers near the Co L[Formula: see text] edge. The nonlinearity is directly observed through the change of the absorption spectrum, which is modified in less than 40 fs within 2 eV of its threshold. This is interpreted as a redistribution of valence electrons near the Fermi level. For our magnetic sample this also involves mixing of majority and minority spins, due to sample demagnetization. Our findings reveal that nonlinear X-ray responses of materials may already occur at relatively low intensities, where the macroscopic sample is not destroyed, providing insight into ultrafast charge and spin dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA