Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 6: 16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729006

RESUMO

Phloem plays a fundamental role in plants by transporting hormones, nutrients, proteins, RNAs, and carbohydrates essential for plant growth and development. However, the identity of the underlying phloem genes and pathways remain enigmatic especially in agriculturally important perennial crops, in part, due to the technical difficulty of phloem sampling. Here, we used two phloem-specific promoters and a translating ribosome affinity purification (TRAP) strategy to characterize the phloem translatome during leaf development at 2, 4, and 6 weeks post vernalization in plum (Prunus domestica L.). Results provide insight into the changing phloem processes that occur during leaf development. These processes included the early activation of DNA replication genes that are likely involved in phloem cell division during leaf expansion, as well as the upregulation of phloem genes associated with sink to source conversion, induction of defense processes, and signaling for reproduction. Combined these results reveal the dynamics of phloem gene expression during leaf development and establish the TRAP system as a powerful tool for studying phloem-specific functions and responses in trees.

2.
Plant Dis ; 90(4): 397-403, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30786584

RESUMO

The primary causal agents of anthracnose-like fruit rots in Ohio and their potential resistance to fungicides commonly used to control these fungal pathogens were determined. Nineteen tomato production fields throughout the state were sampled in 2002 and 2003 for fruit with anthracnose-like lesions. Fungi were isolated from these samples, classified using restriction fragment length polymorphism analysis, and identified by internal transcribed spacer sequence analysis. Some of the fungi isolated may represent secondary invaders of preexisting wounds or lesions. Colletotrichum spp. were most abundant in our collection, representing 136 of the 187 isolates. In addition, there were 23 Alternaria, 12 Fusarium, 12 Phomopsis, and 4 Mucor isolates. Colletotrichum, Alternaria, and Fusarium spp. were found throughout the major tomato production areas in the state. In a laboratory investigation, a subset of the Colletotrichum, Alternaria, and Fusarium isolates caused symptoms similar to early development of anthracnose on wounded tomato fruit. In vitro inhibition assays indicated that most Colletotrichum isolates were sensitive to labeled rates of azoxystrobin, chlorothalonil, and mancozeb. However, some Alternaria isolates were less sensitive to azoxystrobin and chlorothalonil than the Colletotrichum isolates. In addition, most Fusarium isolates were also more insensitive to azoxystrobin and mancozeb, and most Phomopsis isolates were not inhibited by azoxystrobin at the levels tested. The patterns of insensitivity to azoxystrobin and chlorothalonil were also observed in situ with excised fruit. Because the fungicides tested are not currently labeled for control of tomato diseases caused by Fusarium or Phomopsis, these results indicate that some pathogen species that can cause anthracnose-like symptoms may not be entirely sensitive to fungicides commonly used in tomato production.

3.
Phytopathology ; 95(6): 715-24, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18943789

RESUMO

ABSTRACT The abundance and diversity of phlD(+) Pseudomonas spp. colonizing the rhizospheres of young, field-grown corn and soybean plants were assayed over a 3-year period. Populations of these bacteria were detected on the large majority of plants sampled in the state of Ohio, but colonization was greater on corn. Although significant variation in the incidence of rhizosphere colonization was observed from site to site and year to year on both crops, the magnitude of the variation was greatest for soybean. The D genotype was detected on plants collected from all 15 counties examined, and it represented the most abundant subpopulation on both crops. Additionally, six other genotypes (A, C, F, I, R, and S) were found to predominate in the rhizosphere of some plants. The most frequently observed of these were the A genotype and a newly discovered S genotype, both of which were found on corn and soybean roots obtained from multiple locations. Multiple isolates of the most abundant genotypes were recovered and characterized. The S genotype was found to be phylogenetically and phenotypically similar to the D genotype. In addition, the novel R genotype was found to be most similar to the A genotype. All of the isolates displayed significant capacities to inhibit the growth of an oomycete pathogen in vitro, but such phenotypes were highly dependent on media used. When tested against multiple oomycete pathogens isolated from soybean, the A genotype was significantly more inhibitory than the D genotype when incubated on 1/10x tryptic soy agar and 1/5x corn meal agar. Seed inoculation with different isolates of the A, D, and S genotypes indicated that significant root colonization, generally in excess of log 5 cells per gram of root, could be attained on both crops. Field trials of the A genotype isolate Wayne1R indicated the capacity of inoculant populations to supplement the activities of native populations so as to increase soybean stands and yields. The relevance of these findings to natural and augmentative biocontrol of root pathogens by these bacteria is discussed.

4.
FEMS Microbiol Ecol ; 49(2): 307-18, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19712423

RESUMO

Pseudomonas fluorescens strains 2-79, Q8r1-96, and a recombinant strain, Z30-97, produce the antibiotics phenazine-1-carboxylic acid (PCA), 2,4-diacetylphloroglucinol (DAPG), or both antibiotics, respectively. Rhizosphere colonization by these strains and subsequent alterations of bacterial community structure were assayed over multiple growth cycles of wheat under controlled conditions. While added to soil at just log 4 cells per gram prior to planting, all four strains subsequently colonized germinating wheat roots to levels in excess of log 6.5 cells per g (f.w.). Strain-specific differences in rhizosphere competence were observed, but these were not generally related to the chromosomal insertion of the phz genes. Multiple differences in bacterial community structure were detected among treatments in each cycle; however, the large majority of changes were not consistently related to the abundance of inoculant strains in the rhizosphere nor the genetic make-up of the inoculant strains. Nonetheless, T-RFLP profiles of amplified 16S eubacterial sequences indicated that, when compared to the untreated samples, inoculation with Z30-97 resulted in several shifts in rhizosphere bacterial community structure previously associated with decreased levels of root disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...