Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400482, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108056

RESUMO

Digitally-encoded poly(phosphodiesters) (d-PPDE) with highly complex primary structures are evaluated for layer-by-layer (LbL) assembly. To be easily decoded by mass spectrometry (MS), these digital polymers contain many different monomers: 2 coding units allowing binary encryption, 1 cleavable spacer allowing controlled MS fragmentation, and 3 mass tags allowing fragment identification. These complex heteropolymers are therefore composed of 6 different motifs. Despite this strong sequence heterogeneity, it is found that they enable a highly controlled LbL film formation. For instance, a regular growth is observed when alternating the deposition of negatively-charged d-PPDE and positively-charged poly(allyl amine hydrochloride) (PAH). Yet, in this approach, the interdistance between consecutive coded d-PPDE layers remains relatively small, which may be an issue for data storage applications, especially for the selective decoding of the stored information. Using poly(sodium 4-styrene sulfonate) (PSS) as an intermediate non-coded polyanion, it is shown that a controlled interdistance between d-PPDE layers can be easily achieved, while still maintaining a regular LbL growth. Last but not least, it is found in this work that d-PPDE of relatively small molecular weight (i.e., significantly smaller than those of PAH and PSS) still enables a controlled LbL assembly.

2.
Rapid Commun Mass Spectrom ; 38(17): e9852, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38924174

RESUMO

RATIONALE: Optimizing the structure of digital polymers is an efficient strategy to ensure their tandem mass spectrometry (MS/MS) readability. In block-truncated poly(phosphodiester)s, homolysis of C-ON bonds in long chains permits the release of smaller blocks amenable to sequencing. Yet the dissociation behavior of diradical blocks was observed to strongly depend on their charge state. METHODS: Polymers were ionized in negative mode electrospray and activated in-source so that blocks released as primary fragments can be investigated using ion mobility spectrometry (IMS) or sequenced in the post-IMS collision cell. Collision cross sections (CCS) were derived from arrival times using a calibration procedure developed for polyanions using the IMSCal software. A multistep protocol based on quantum methods and classical molecular dynamics was implemented for molecular modeling and calculation of theoretical CCS. RESULTS: Unlike their triply charged homologues, dissociation of diradical blocks at the 2- charge state produces additional fragments, with +1 m/z shift for those holding the nitroxide α-termination and -1 m/z for those containing the carbon-centered radical ω-end. These results suggest cyclization of these diradical species, followed by H• transfer on activated reopening of this cycle. This assumption was validated using IMS resolution of the cyclic/linear isomers and supported by molecular modeling. CONCLUSIONS: Combining IMS with molecular modeling provided new insights into how the charge state of digital blocks influences their dissociation. These results permit to define new guidelines to improve either ionization conditions or the structural design of these digital polymers for best MS/MS readability.

3.
J Am Soc Mass Spectrom ; 35(3): 534-541, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38345914

RESUMO

Block-truncated poly(phosphodiester)s are digital macromolecules storing binary information that can be decoded by MS/MS sequencing of individual blocks released as primary fragments of the entire polymer. As such, they are ideal species for the serial sequencing methodology enabled by MS-(CID)-IMS-(CID)-MS coupling, where two activation stages are combined in-line with ion mobility spectrometry (IMS) separation. Yet, implementation of this coupling still requires efforts to achieve IMS resolution of inner blocks, that can be considered as small oligomers with α termination composed of one nitroxide decorated with a different tag. As shown by molecular dynamics simulation, these oligomers adopt a conformation where the tag points out of the coil formed by the chain. Accordingly, the sole nitroxide termination was investigated here as a model to reduce the cost of calculation aimed at predicting the shift of collision cross-section (CCS) induced by new tag candidates and extrapolate this effect to nitroxide-terminated oligomers. A library of 10 nitroxides and 7 oligomers was used to validate our calculation methods by comparison with experimental IMS data as well as our working assumption. Based on conformation predicted by theoretical calculation, three new tag candidates could be proposed to achieve the +40 Å2 CCS shift required to ensure IMS separation of oligomers regardless of their coded sequence.

4.
J Am Chem Soc ; 146(10): 6456-6460, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286022

RESUMO

Toehold-mediated strand displacement (TMSD) was tested as a tool to edit information in synthetic digital polymers. Uniform DNA-polymer biohybrid macromolecules were first synthesized by automated phosphoramidite chemistry and characterized by HPLC, mass spectrometry, and polyacrylamide gel electrophoresis (PAGE). These precursors were diblock structures containing a synthetic poly(phosphodiester) (PPDE) segment covalently attached to a single-stranded DNA sequence. Three types of biohybrids were prepared herein: a substrate containing an accessible toehold as well as input and output macromolecules. The substrate and the input macromolecules contained noncoded PPDE homopolymers, whereas the output macromolecule contained a digitally encoded segment. After hybridization of the substrate with the output, incubation in the presence of the input led to efficient TMSD and the release of the digital segment. TMSD can therefore be used to erase or rewrite information in self-assembled biohybrid superstructures. Furthermore, it was found in this work that the conjugation of DNA single strands to synthetic segments of chosen lengths greatly facilitates the characterization and PAGE visualization of the TMSD process.


Assuntos
DNA , Polímeros , DNA/química , DNA de Cadeia Simples , Recombinação Genética , Organofosfatos
5.
Angew Chem Int Ed Engl ; 62(45): e202310801, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37738223

RESUMO

A library of phosphoramidite monomers containing a main-chain cleavable alkoxyamine and a side-chain substituent of variable molar mass (i.e. mass tag) was prepared in this work. These monomers can be used in automated solid-phase phosphoramidite chemistry and therefore incorporated periodically as spacers inside digitally-encoded poly(phosphodiester) chains. Consequently, the formed polymers contain tagged cleavable sites that guide their fragmentation in mass spectrometry sequencing and enhance their digital readability. The spacers were all prepared via a seven steps synthetic procedure. They were afterwards tested for the synthesis and sequencing of model digital polymers. Uniform digitally-encoded polymers were obtained as major species in all cases, even though some minor defects were sometimes detected. Furthermore, the polymers were decoded in pseudo-MS3 conditions, thus confirming the reliability and versatility of the spacers library.

6.
Angew Chem Int Ed Engl ; 62(16): e202300014, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36696359

RESUMO

Macromolecular information transfer can be defined as the process by which a coded monomer sequence is communicated from one macromolecule to another. In such a transfer process, the information sequence can be kept identical, transformed into a complementary sequence or even translated into a different molecular language. Such mechanisms are crucial in biology and take place in DNA→DNA replication, DNA→RNA transcription and RNA→protein translation. In fact, there would be no life on Earth without macromolecular information transfer. Mimicking such processes with synthetic macromolecules would also be of major scientific relevance because it would open up new avenues for technological applications (e.g. data storage and processing) but also for the creation of artificial life. In this important context, this minireview summarizes recent research about information transfer in synthetic oligomers and polymers. Medium- and long-term perspectives are also discussed.


Assuntos
DNA , Polímeros , Substâncias Macromoleculares , DNA/genética , Replicação do DNA , RNA
7.
Macromol Rapid Commun ; 43(21): e2200412, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35803899

RESUMO

The use of sequence-defined polymers is an interesting emerging solution for materials identification and traceability. Indeed, a very large amount of identification sequences can be created using a limited alphabet of coded monomers. However, in all reported studies, sequence-defined taggants are usually included in a host material by noncovalent adsorption or entrapment, which may lead to leakage, aggregation, or degradation. To avoid these problems, sequence-defined polymers are covalently attached in the present work to the mesh of model materials, namely acrylamide hydrogels. To do so, sequence-coded polyurethanes containing a disulfide linker and a terminal methacrylamide moiety are synthesized by stepwise solid-phase synthesis. These methacrylamide macromonomers are afterward copolymerized with acrylamide and bisacrylamide in order to achieve cross-linked hydrogels containing covalently-bound polyurethane taggants. It is shown herein that these taggants can be selectively detached from the hydrogel mesh by reactive desorption electrospray ionization. Using dithiothreitol the disulfide linker that links the taggant to the gel can be selectively cleaved. Ultimately, the released taggants can be decoded by tandem mass spectrometry.


Assuntos
Acrilamidas , Polímeros , Dissulfetos/química , Hidrogéis/química , Poliuretanos , Acrilamida , Espectrometria de Massas por Ionização por Electrospray/métodos
8.
Acc Chem Res ; 54(7): 1791-1800, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33729749

RESUMO

In biological systems, the storage and transfer of genetic information rely on sequence-controlled nucleic acids such as DNA and RNA. It has been realized for quite some time that this property is not only crucial for life but could also be very useful in human applications. For instance, DNA has been actively investigated as a digital storage medium over the past decade. Indeed, the "hard-disk of life" is an obvious choice and a highly optimized material for storing data. Through decades of nucleic acids research, technological tools for parallel synthesis and sequencing of DNA have been readily available. Consequently, it has already been demonstrated that different types of documents (e.g., texts, images, videos, and industrial data) can be stored in chemically synthesized DNA libraries. However, DNA is subject to biological constraints, and its molecular structure cannot be easily varied to match technological needs. In fact, DNA is not the only macromolecule that enables data storage. In recent years, it has been demonstrated that a wide variety of synthetic polymers can also be used for such a purpose. Indeed, modern polymer synthesis allows the preparation of synthetic macromolecules with precisely controlled monomer sequences. Altogether, about a dozens of synthetic digital polymers have already been described, and many more can be foreseen. Among them, sequence-defined poly(phosphodiester)s are one of the most promising options. These polymers are prepared by stepwise phosphoramidite chemistry like chemically synthesized oligonucleotides. However, they are constructed with non-natural building blocks and therefore share almost no structural characteristics with nucleic acids, except phosphate repeat units. Still, they contain readable digital messages that can be deciphered by nanopore sequencing or mass spectrometry sequencing. In this Account, we describe our recent research efforts in synthesizing and sequencing optimal abiological digital poly(phosphodiester)s. A major advantage of these polymers over DNA is that their molecular structure can easily be varied to tune their properties. During the last 5 years, we have engineered the molecular structure of these polymers to adjust crucial parameters such as the storage density, storage capacity, erasability, and readability. Consequently, high-capacity PPDE chains, containing hundreds of bits per chains, can now be synthesized and efficiently sequenced using a routine mass spectrometer. Furthermore, sequencing data can be automatically decrypted with the help of decoding software. This new type of coded matter can also be edited using practical physical triggers such as light and organized in space by programmed self-assembly. All of these recent improvements are summarized and discussed herein.

9.
J Org Chem ; 86(6): 4532-4546, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33636075

RESUMO

The recognition of substituted phosphates underpins many processes including DNA binding, enantioselective catalysis, and recently template-directed rotaxane synthesis. Beyond ATP and a few commercial substrates, however, little is known about how substituents effect organophosphate recognition. Here, we examined alcohol substituents and their impact on recognition by cyanostar macrocycles. The organophosphates were disubstituted by alcohols of various chain lengths, dipropanol, dihexanol, and didecanol phosphate, each accessed using modular solid-phases syntheses. Based on the known size-selective binding of phosphates by π-stacked dimers of cyanostars, threaded [3]pseudorotaxanes were anticipated. While seen with butyl substituents, pseudorotaxane formation was disrupted by competitive OH···O- hydrogen bonding between both terminal hydroxyls and the anionic phosphate unit. Crystallography also showed formation of a backfolded propanol conformation resulting in an 8-membered ring and a perched cyanostar assembly. Motivated by established entropic penalties accompanying ring formation, we reinstated [3]pseudorotaxanes by extending the size of the substituent to hexanol and decanol. Chain entropy overcomes the enthalpically favored OH···O- contacts to favor random-coil conformations required for seamless, high-fidelity threading of dihexanol and didecanol phosphates inside cyanostars. These studies highlight how chain length and functional groups on phosphate's substituents can be powerful design tools to regulate binding and control assembly formation during phosphate recognition.


Assuntos
Rotaxanos , Entropia , Ligação de Hidrogênio , Conformação Molecular , Fosfatos
10.
ACS Macro Lett ; 10(4): 481-485, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35549221

RESUMO

Uniform conjugates combining a DNA aptamer (either anti-MUC1 or ATP aptamer) and a synthetic polymer segment were synthesized by automated phosphoramidite chemistry. This multistep growth polymer chemistry enables the use of both natural (i.e., nucleoside phosphoramidites) and non-natural monomers (e.g., alkyl- and oligo(ethylene glycol)-phosphoramidites). Thus, in the present work, six different aptamer-polymer conjugates were synthesized and characterized by ion-exchange HPLC, circular dichroism spectroscopy, and electrospray mass spectrometry. All these methods evidenced the formation of uniform molecules with precisely controlled chain-length and monomer sequences. Furthermore, aptamer folding was not affected by polymer bioconjugation. The method described herein is straightforward and allows covalent attachment of homopolymers and copolymers to biofunctional DNA aptamers.


Assuntos
Aptâmeros de Nucleotídeos , Polímeros , Aptâmeros de Nucleotídeos/química , Cromatografia Líquida de Alta Pressão , Organofosfatos , Compostos Organofosforados , Polímeros/química
11.
Angew Chem Int Ed Engl ; 60(2): 917-926, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-32964618

RESUMO

A major step towards reliable reading of information coded in the sequence of long poly(phosphodiester)s was previously achieved by introducing an alkoxyamine spacer between information sub-segments. However, MS/MS decoding had to be performed manually to safely identify useful fragments of low abundance compared to side-products from the amide-based alkoxyamine used. Here, alternative alkoxyamines were designed to prevent side-reactions and enable automated MS/MS sequencing. Different styryl-TEMPO spacers were prepared to increase radical delocalization and stiffness of the structure. Their dissociation behavior was investigated by EPR and best results were obtained with spacers containing in-chain benzyl ring, with no side-reaction during synthesis or sequencing. Automated decoding of these polymers was performed using the MS-DECODER software, which interprets fragmentation data recorded for each sub-segment and re-align them in their original order based on location tags.

12.
Sci Adv ; 6(50)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33298438

RESUMO

Digital data storage is a growing need for our society and finding alternative solutions than those based on silicon or magnetic tapes is a challenge in the era of "big data." The recent development of polymers that can store information at the molecular level has opened up new opportunities for ultrahigh density data storage, long-term archival, anticounterfeiting systems, and molecular cryptography. However, synthetic informational polymers are so far only deciphered by tandem mass spectrometry. In comparison, nanopore technology can be faster, cheaper, nondestructive and provide detection at the single-molecule level; moreover, it can be massively parallelized and miniaturized in portable devices. Here, we demonstrate the ability of engineered aerolysin nanopores to accurately read, with single-bit resolution, the digital information encoded in tailored informational polymers alone and in mixed samples, without compromising information density. These findings open promising possibilities to develop writing-reading technologies to process digital data using a biological-inspired platform.

13.
Angew Chem Int Ed Engl ; 59(46): 20390-20393, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32779792

RESUMO

The degradation and repair of uniform sequence-defined poly(N-substituted urethane)s was studied. Polymers containing an ω-OH end-group and only ethyl carbamate main-chain repeat units rapidly degrade in NaOH solution through an ω→α depolymerization mechanism with no apparent sign of random chain cleavage. The degradation mechanism is not notably affected by the nature of the side-chain N-substituents and took place for all studied sequences. On the other hand, depolymerization is significantly influenced by the molecular structure of the main-chain repeat units. For instance, hexyl carbamate main-chain motifs block unzipping and can therefore be used to control the degradation of specific sequence sections. Interestingly, the partially degraded polymers can also be repaired; for example by using a combination of N,N'-disuccinimidyl carbonate with a secondary amine building-block. Overall, these findings open up interesting new avenues for chain-healing and sequence editing.

14.
Macromol Rapid Commun ; 41(12): e2000215, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32449253

RESUMO

The collision-induced dissociation (CID) of sequence-defined poly(alkoxyamine phosphodiester)s is studied by electrospray ionization mass spectrometry. These informational polymers are synthesized using three different nitroxide building blocks, namely proxyl-, SG1-, and TEMPO-derivatives. For a polymer containing TEMPO- and SG1-based main chain alkoxyamines, it is found that both types of alkoxyamines break in CID tandem mass spectrometry (MS/MS). However, SG1-sites are preferentially cleaved and this predominance can be increased by reducing collision energy, even though selective bond fragmentation is not observed. On the other hand, for a polymer containing proxyl- and SG1-alkoxyamines, selective bond cleavage is observed at all studied collision energies. The SG1-alkoxyamines can be first cleaved in MS/MS conditions and secondly the proxyl-alkoxyamines in pseudo-MS3 conditions. These results open up interesting new avenues for the design of readable, erasable or programmable informational polymers.


Assuntos
Aminas/química , Organofosfatos/química , Polímeros/química , Estrutura Molecular
15.
Rapid Commun Mass Spectrom ; 34(14): e8815, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32311797

RESUMO

RATIONALE: To prevent solubility issues faced with sequence-defined polyurethanes, a new family of digital polyurethanes was conceived with the alkyl coding chain held by the carbamate nitrogen (N) atom and CH3 instead of OH as the ϖ termination. This led to different dissociation mechanisms that were explored prior to optimizing tandem mass spectrometric (MS/MS) sequencing. METHODS: N-Substituted polyurethanes (N-R PUs) were dissolved in methanol and subjected to collision-induced dissociation (CID) as deprotonated chains in the negative ion mode, and as ammonium and sodium adducts in the positive ion mode, using electrospray ionization (ESI) as the ionization technique. Their dissociation behavior was thoroughly investigated using a quadrupole time-of-flight (QTOF) instrument in order to provide accurate mass measurements to support proposed fragmentation mechanisms. RESULTS: While O-(CO) bonds were broken in N-H PUs, the CH2 -O linkage between repeating units was cleaved upon CID of N-R PUs. This main process occurred either from deprotonated molecules or from cationized chains but was followed by different rearrangements, producing up to four product ion series. Yet, MS/MS spectra could be drastically simplified for precursor ions having their acidic α group methylated, as was found to spontaneously occur upon storage in methanol. CONCLUSIONS: Using experimental conditions aimed at avoiding any reactive proton in precursor ions (no acidic end-groups and alkali adduction), full coverage sequence of N-R PUs was successfully achieved with the single ion series observed in MS/MS, opening a promising perspective for reading large amounts of information stored in these dyad-encoded polymers.

16.
ACS Macro Lett ; 9(2): 185-189, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35638671

RESUMO

Terrestrial Life is based on polymers. In all known living organisms, DNA stores genetic information, mutates, self-replicates, and guides the synthesis of messenger molecules. Although the function of nucleic acids is well-understood, the development of artificial macromolecular mimics remains very limited. Laboratory-synthesized nucleic acids still support Life, and some nucleic acids analogues exhibit biological functions. Yet, after hundred years of polymer science, no other type of Life-supporting macromolecule (i.e., non-nucleic acids) has ever been reported. In this context, the aim of the present viewpoint is to discuss important challenges that shall be addressed by polymer chemists to achieve artificial Life. Similarly to DNA, an artificial Life-supporting macromolecule shall store information, transfer information, and mutate. Many tools, such as sequence-defined polymer synthesis, polymer modification, supramolecular polymer chemistry, and dynamic chemistry, are already available to chemists to attain these properties. However, the design of artificial Life-supporting macromolecules is hindered by two main factors. First, the chemical search space is enormous, and it is difficult to predict promising structures, even with the help of combinatorial and chemoinformatic tools. Second, rational design is probably a limited approach to achieve macromolecules that shall be involved in nonequilibrium metabolic systems. Hence, a synergic combination of classical polymer chemistry with the more recent field of systems chemistry is probably the key toward the emergence of artificial Life-supporting macromolecules.

17.
Nat Commun ; 10(1): 3774, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484927

RESUMO

Light-induced alteration of macromolecular information plays a central role in biology and is known to influence health, aging and Darwinian evolution. Here, we report that light can also trigger sequence variations in abiotic information-containing polymers. Sequence-coded poly(phosphodiester)s were synthesized using four phosphoramidite monomers containing either photo-sensitive or photo-inert substituents. These monomers allow different sequence manipulations. For instance, using two light-cleavable monomers containing o-nitrobenzyl ether and o-nitroveratryl ether motifs, photo-erasable digital polymers were prepared. These polymers can be decoded by tandem mass spectrometry but become unreadable after UVA exposure. The opposite behavior, i.e. photo-revealable sequences, was obtained with polymers made of two isobaric monomers containing light-cleavable o-nitrobenzyl ether and light-inert p-nitrobenzyl ether substituents. Furthermore, when the latter two monomers were used in conjunction with a third monomer bearing a light-inert OH group, site-directed photo-mutations were induced in synthetic polymers. This was used herein to change the meaning of binary sequences.


Assuntos
Técnicas de Química Sintética/métodos , Polímeros/efeitos da radiação , Raios Ultravioleta , Estrutura Molecular , Polímeros/síntese química , Espectrometria de Massas em Tandem
18.
Anal Chem ; 91(11): 7266-7272, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31074610

RESUMO

The defined sequence of two comonomers in sequence-controlled macromolecules can be used to store binary information which is further decoded by MS/MS sequencing. In order to achieve the full sequence coverage requested for reliable decoding, the structure of these polymers can be optimized to minimize their dissociation extent, as shown for poly(alkoxyamine phosphodiester)s (PAPs) where weak alkoxyamine bonds were introduced in each repeating unit to make all phosphate groups MS/MS silent. However, for secret communications, a too high MS/MS readability could be a drawback. In this context, the design of PAPs was further optimized in this work to also include a decrypting key based on slight variation of a fragment collision cross section. This was achieved by employing two different nitroxides to build the alkoxyamine moiety, each containing a coding alkyl segment of the same mass but different architectures. As a result, the digital sequence determined from primary fragments observed in MS/MS had to be decrypted according to appropriate rules that depend on the drift times measured by ion mobility spectrometry for repeating units released as secondary product ions.

19.
ACS Macro Lett ; 8(8): 1002-1005, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35619476

RESUMO

Sequence-defined poly(N-substituted urethanes) were synthesized via a solid-phase iterative protocol including two successive orthogonal coupling steps: the formation of an activated carbonate and its chemoselective reaction with the secondary amine group of amino alcohol building blocks. This simple method was used to write binary information on the formed polymers using four-coded molecules, 2-(methylamino)ethanol, 2-(ethylamino)ethanol, 2-(propylamino)ethanol, and 2-(butylamino)ethanol, symbolizing binary dyads 00, 01, 10, and 11, respectively. The method is fast and allows synthesis of uniform oligomers and polymers with controlled lengths (4-mer to 28-mer) and digital information sequences. Furthermore, the coded poly(N-substituted urethanes) were easily characterized by electrospray mass spectrometry and decoded by tandem mass spectrometry. Overall, these digital macromolecules offer interesting advantages over conventional sequence-coded polyurethanes, i.e., synthesis of longer chains, reduced synthesis times, and better solubility and processing in common organic solvents.

20.
ACS Macro Lett ; 8(7): 779-782, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35619507

RESUMO

The crystallization of digitally encoded polyurethanes was studied by electron diffraction. A series of oligomers with different primary structures was analyzed in this work. They all form hydrogen-bonding-directed lamellar single crystals with a base-centered orthorhombic unit cell. Although crystal morphology was the same in all cases, the digital coding of the oligomers has a small influence on the intersheet distance in the crystals. The crystal lattices allow calculation of the volume occupied by one basic information unit, which is in the range 148-188 Å3. Interestingly, this volume is about 3× smaller than that occupied by a coded nucleotide in a DNA double helix. Furthermore, crystallization of blends of oligourethanes with different coded primary structures was investigated. Oligomers with drastically different monomer compositions form structures that are not cocrystals but more probably segregated crystals containing distinct domains of different composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA