Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Physiol Rep ; 11(15): e15790, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37568265

RESUMO

We have demonstrated that oligodeoxynucleotide IMT504 promotes significant improvement in the diabetic condition in diverse animal models. Based on these results, here we evaluated whether these effects observed in vivo could be due to direct effects on ß-cells. We demonstrate by immunofluorescence that IMT504 enters the cell and locates in cytoplasm where it induces GSK-3ß phosphorylation that inactivates this kinase. As GSK-3ß tags Pdx1 for proteasomal degradation, by inactivating GSK-3ß, IMT504 induces an increase in Pdx1 protein levels, demonstrated by Western blotting. Concomitantly, an increase in Ins2 and Pdx1 gene transcription was observed, with no significant increase in insulin content or secretion. Enhanced Pdx1 is promising since it is a key transcription factor for insulin synthesis and is also described as an essential factor for the maintenance ß-cell phenotype and function. Dose-dependent inhibition of H2 O2 -induced apoptosis determined by ELISA as well as decreased expression of Bax was also observed. These results were confirmed in another ß-cell line, beta-TC-6 cells, in which a cytokine mix induced apoptosis that was reversed by IMT504. In addition, an inhibitor of IMT504 entrance into cells abrogated the effect IMT504. Based on these results we conclude that the ß-cell recovery observed in vivo may include direct effects of IMT504 on ß-cells, by maintaining their identity/phenotype and protecting them from oxidative stress and cytokine-induced apoptosis. Thus, this work positions IMT504 as a promising option in the framework of the search of new therapies for type I diabetes treatment.


Assuntos
Apoptose , Oligodesoxirribonucleotídeos , Animais , Glicogênio Sintase Quinase 3 beta , Oligodesoxirribonucleotídeos/farmacologia , Insulina/metabolismo , Citocinas/farmacologia , Proliferação de Células
2.
Am J Physiol Endocrinol Metab ; 324(4): E314-E329, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652400

RESUMO

Kisspeptin and γ-amino butyric acid (GABA), synthesized in the central nervous system, are critical for reproduction. Both are also expressed in peripheral organs/tissues critical to metabolic control (liver/pancreas/adipose). Many kisspeptin neurons coexpress GABAB receptors (GABABR) and GABA controls kisspeptin expression and secretion. We developed a unique mouse lacking GABABR exclusively from kisspeptin cells/neurons (Kiss1-GABAB1KO) to evaluate the impact on metabolism/reproduction. We confirmed selective deletion of GABABR from Kiss1 cells in the anteroventral periventricular nucleus/periventricular nucleus continuum (AVPV/PeN; immunofluorescence and PCR) and arcuate nucleus (ARC), medial amygdala (MeA), pituitary, liver, and testes (PCR). Young Kiss1-GABAB1KO males were fertile, with normal LH and testosterone. Kiss1 expression was similar between genotypes in AVPV/PeN, ARC, MeA, bed nucleus of the stria terminalis (BNST), and peripheral organs (testis, liver, pituitary). Kiss1-GABAB1KO males presented higher fasted glycemia and insulin levels, an impaired response to a glucose overload, reduced insulin sensitivity, and marked insulin resistance. Interestingly, when Kiss1-GABAB1KO males got older (9 mo old) their body weight (BW) increased, in part due to an increase in white adipose tissue (WAT). Old Kiss1-GABAB1KO males showed higher fasted insulin, increased pancreatic insulin content, insulin resistance, and significantly decreased pancreatic kisspeptin levels. In sum, lack of GABABR specifically in Kiss1 cells severely impacts glucose homeostasis in male mice, reinforcing kisspeptin involvement in metabolic regulation. These alterations in glucose homeostasis worsened with aging. We highlight the impact of GABA through GABABR in the regulation of the pancreas kisspeptin system in contrast to liver kisspeptin that was not affected.NEW & NOTEWORTHY We developed a unique mouse lacking GABAB receptors specifically in Kiss1 cells to evaluate the impact on reproduction and metabolism. Knockout males showed a severe impact on glucose homeostasis, which worsened with aging. These results reinforce the proposed kisspeptin involvement in metabolic regulation and highlight the impact of GABA through GABABR in the regulation of the peripheral pancreas kisspeptin system.


Assuntos
Resistência à Insulina , Insulinas , Camundongos , Animais , Masculino , Kisspeptinas/genética , Kisspeptinas/metabolismo , Resistência à Insulina/genética , Estradiol/metabolismo , Camundongos Knockout , Reprodução/genética , Homeostase , Ácido gama-Aminobutírico/metabolismo
3.
J Comp Neurol ; 531(7): 720-742, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36716283

RESUMO

In mammals, gestation is considered a physiological hyperprolactinemia status. Prolactin (PRL) is one of the modulators of gonadotropin-releasing hormone (GnRH) neurons function. The South American plains vizcacha (Lagostomus maximus) is a unique model to study the regulation of hypothalamic GnRH neurons by direct and indirect steroid-dependent pathways. The aim was to characterize the hypothalamic expression of endocrine markers in vizcacha during gestation as well as their response to experimental induced hyperprolactinemia. The possible involvement of PRL regulatory pathways on GnRH in the context of hypothalamic and pituitary reactivation in mid-gestating vizcachas was discussed. Using two in vivo approaches, we determined changes in the hypothalamic expression and distribution of prolactin receptor (PRLR), tyrosine hydroxylase (TH), and dopamine type 2 receptor. A significant increment in the number of tuberoinfundibular dopaminergic (TIDA) neurons was determined in the arcuate nucleus from early to term pregnancy. On the other hand, at preoptic area, the number of both TH+PRLR+ and GnRH+PRLR+ double-labeled neurons significantly decreased at mid-pregnancy probably allowing the recovery of GnRH expression indicating that both types of neurons may represent the key points of PRL indirect and direct pathways modulating GnRH. Moreover, in a model of induced hyperprolactinemic vizcachas, the inhibitory effect of PRL on GnRH at both expression and delivery levels were confirmed. These results suggest the concomitant participation of both PRL regulatory pathways on GnRH modulation and pinpoint the key role of PRL on GnRH expression enabling the recovery of the hypothalamic activity during the gestation in this species.


Assuntos
Hormônio Liberador de Gonadotropina , Hiperprolactinemia , Gravidez , Feminino , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Receptores da Prolactina/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/farmacologia , Hiperprolactinemia/metabolismo , Hipotálamo/metabolismo , Roedores/metabolismo , Neurônios Dopaminérgicos/metabolismo
4.
Neuroendocrinology ; 112(10): 998-1026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34963114

RESUMO

INTRODUCTION: The kisspeptin gene Kiss1 is expressed in two hypothalamic areas: anteroventral periventricular nucleus/periventricular nucleus (AVPV/PeN) and arcuate nucleus (ARC), and also in gonads. Several pieces of evidence suggests that gamma-amino butyric acid B receptors (GABAB) signaling can regulate Kiss1 expression. Here, we inhibited GABAB signaling from PND2 to PND21 and evaluated the hypothalamic-pituitary-gonadal (HPG) axis. METHODS: BALB/c mice were treated on postnatal days 2-21 (PND2-PND21) with CGP55845 (GABAB antagonist) and evaluated in PND21 and adulthood: gene expression (qPCR) in the hypothalamus and gonads, hormones by radioimmunoassay, gonad histochemistry (H&E), puberty onset, and estrous cycles. RESULTS: At PND21, CGP inhibited Kiss1 and Tac2 and increased Pdyn and Gabbr1 in the ARC of both sexes and decreased Th only in female AVPV/PeN. Serum follicle-stimulating hormone (FSH) and testis weight were decreased in CGP-males, and puberty onset was delayed. In adults, Kiss1, Tac2, Pdyn, Pgr, Cyp19a1, and Gad1 were downregulated, while Gabbr1 was upregulated in the ARC of both sexes. In the AVPV/PeN, Kiss1, Th, Cyp19a1, and Pgr were decreased while Gad1 was increased in CGP-females, whereas Cyp19a1 was increased in CGP-males. Serum FSH was increased in CGP-males while prolactin was increased in CGP-females. Testosterone and progesterone were increased in ovaries from CGP-females, in which Kiss1, Cyp19a1, and Esr1 were downregulated while Hsd3b2 was upregulated, together with increased atretic and decreased ovulatory follicles. Testes from CGP-males showed decreased progesterone, increased Gabbr1, Kiss1, Kiss1r, and Esr2 and decreased Cyp19a1, and clear signs of seminiferous tubules atrophy. CONCLUSION: These results demonstrate that appropriate GABAB signaling during this critical prepubertal period is necessary for the normal development of the HPG axis.


Assuntos
Kisspeptinas , Progesterona , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Hormônio Foliculoestimulante , Antagonistas GABAérgicos , Gônadas , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos , Progesterona/metabolismo , Prolactina/metabolismo , Receptores de Kisspeptina-1/metabolismo , Maturidade Sexual/fisiologia , Testosterona/metabolismo , Desmame
5.
J Comp Physiol B ; 192(1): 141-159, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459966

RESUMO

Melatonin, the key messenger of photoperiodic information, is synthesized in the pineal gland by arylalkylamine N-acetyltransferase enzyme (AANAT). It binds to specific receptors MT1 and MT2 located in the hypothalamus and pituitary gland. Melatonin can modulate the reproductive axis affecting the secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). The South American plains vizcacha, Lagostomus maximus, shows natural poliovulation of up to 800 oocytes per estrous cycle, a 154-day long pregnancy, and reactivation of the reproductive axis at mid-gestation with pre-ovulatory follicular recruitment, presence of active corpora lutea, and variations of the endocrine status. Here we analyzed the involvement of melatonin in the modulation of the hypothalamic and pituitary gland physiology of vizcacha thorough several approaches, including histological localization of melatoninergic system components, assessment of melatoninergic components expression throughout the reproductive cycle, and evaluation of the effect of melatonin on hypothalamic and pituitary activities during the follicular and luteal phases of the estrous cycle. AANAT and melatonin receptors were localized in the pineal gland and preoptic area of the hypothalamus. Increase in pineal AANAT and serum melatonin expression was observed as pregnancy progressed, with the lowest hypothalamic MT1 and MT2 levels at mid-pregnancy. Pulsatility assays demonstrated that melatonin induces GnRH and LH secretion at luteal phase. The melatoninergic system effects on hypothalamic and pituitary gland hormones secretion during pregnancy pinpoint to melatonin as a potential key factor underlying the reactivation of the reproductive axis activity at mid-gestation.


Assuntos
Melatonina , Animais , Feminino , Hipotálamo/metabolismo , Hormônio Luteinizante/metabolismo , Melatonina/metabolismo , Hipófise/metabolismo , Gravidez , América do Sul
6.
Reprod Sci ; 28(12): 3547-3561, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33856666

RESUMO

To explore in mice if a 15% food restriction protocol during pregnancy programs the offspring postnatal development, with emphasis on reproductive function, and to assess if ghrelin (Ghrl) administration to mouse dams exerts effects that mimic those obtained under mild caloric restriction. Mice were 15% food-restricted, injected with 4 nmol/animal/day of Ghrl, or injected with the vehicle (control) thorough pregnancy. After birth, the pups did not receive further treatment. Pups born from food-restricted dams (FR pups) were lighter than Ghrl pups at birth, but reached normal weight at adulthood. Ghrl pups were heavier at birth and gained more weight than control pups (C pups). This effect was not associated with plasma IGF-1. FR pups showed a delay in pinna detachment and eye opening, while an advance was observed in Ghrl pups. FR pups showed also impairment in the surface-righting reflex. In both female FR and Ghrl pups, there was an advance in vaginal opening and, in adulthood, FR pups showed a significant decrease in their own litter size and plasma progesterone, and an increase in embryo loss. A delay in testicular descent was evident in male Ghrl pups. Changes in puberty onset were not associated with differences in the expression of Kiss1 in hypothalamic nuclei. Finally, in adulthood, FR pups showed a significant decrease in sperm quality. In conclusion, a mild food restriction thorough gestation exerted programming effects on the offspring, affecting also their reproductive function in adulthood. These effects were not similar to those of intragestational Ghrl administration.


Assuntos
Restrição Calórica/métodos , Desenvolvimento Fetal/fisiologia , Grelina/administração & dosagem , Efeitos Tardios da Exposição Pré-Natal/genética , Desenvolvimento Sexual/fisiologia , Animais , Animais Recém-Nascidos , Vias de Administração de Medicamentos , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Desenvolvimento Sexual/efeitos dos fármacos
7.
Nucleic Acid Ther ; 31(2): 155-171, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33347786

RESUMO

Type 1 diabetes occurs as a consequence of progressive autoimmune destruction of beta cells. A potential treatment for this disease should address the immune attack on beta cells and their preservation/regeneration. The objective of this study was to elucidate whether the immunomodulatory synthetic oligonucleotide IMT504 was able to ameliorate diabetes in NOD mice and to provide further understanding of its mechanism of action. We found that IMT504 restores glucose homeostasis in a diabetes mouse model similar to human type 1 diabetes, by regulating expression of immune modulatory factors and improving beta cell function. IMT504 treatment markedly improved fasting glycemia, insulinemia, and homeostatic model assessment of beta cell function (HOMA-Beta cell) index. Moreover, this treatment increased islet number and decreased apoptosis, insulitis, and CD45+ pancreas-infiltrating leukocytes. In a long-term treatment, we observed improvement of glucose metabolism up to 9 days after IMT504 cessation and increased survival after 15 days of the last IMT504 injection. We postulate that interleukin (IL)-12B (p40), possibly acting as a homodimer, and Galectin-3 (Gal-3) may function as mediators of this immunomodulatory action. Overall, these results validate the therapeutic activity of IMT504 as a promising drug for type 1 diabetes and suggest possible downstream mediators of its immunomodulatory effect.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Insulina/genética , Oligodesoxirribonucleotídeos/farmacologia , Oligonucleotídeos/farmacologia , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Humanos , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Oligodesoxirribonucleotídeos/genética , Oligonucleotídeos/genética , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia
8.
Gen Comp Endocrinol ; 296: 113518, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32474048

RESUMO

In addition to key mammotrophic hormones such as the pituitary prolactin (PRL) and the ovarian steroids progesterone and estradiol, there are local factors that modulate the tissue dynamics of the mammary glands during pregnancy and lactation. By immunohistochemistry and RT-PCR, we found local transcription and translation of gonadotropin-releasing hormone (GNRH), GNRH receptor (GNRHR), PRL and PRL receptor (PRLR) in mammary glands of adult vizcachas during pregnancy and lactation. Both GNRH and GNRHR showed a lag between protein expression and gene transcription throughout the gestational period: while the highest transcription levels of these genes were recorded at early-pregnancy, the epithelial immunoexpressions of both showed their maximum during lactation. RIA results corroborated the presence of GNRH in mammary glands at all the analyzed stages and confirmed the maximum amount of this peptide in the lactating group. Significant amounts of GNRH were detected in milk samples as well. Conversely, PRL and PRLR shared similar protein and gene expression profiles, all exhibiting maximum values during lactation. GNRH peptide content in mammary glands of females with sulpiride-induced hyperprolactinemia (HP) was significantly lower than that of control females (CT). Although PRL mRNA levels remained unchanged, there was a marked increase in theα-lactalbumin (LALBA) transcription in mammary glands of HP- vs CT-females. These results suggest that after targeting mammary glands, PRL stimulates the expression of milk protein genes, but also, tempers the local expression of GNRH. Mammary gland-explantssupplemented with a GNRH analogue (GN-explants) had no differences in terms of PRLR orLALBA transcription levels compared to CT-explants, so the mammary PRLR signaling would not appear to be modulated by GNRH. Yet, mRNA expression levels of both GNRH and the GNRHR-downstream factor, EGR1, were significantly higher in GN-explants compared to that of CT which would point to a GNRH-positive feedback mechanism. In summary, the local coupled expression of GNRH, GNRHR and EGR1 in the mammary gland throughout pregnancy of vizcachas, the PRL-dependent mammary GNRH secretion as well as the GNRH positive feedback on its own transcription suggest an autocrine-paracrine regulatory mechanism and propose an active role for GNRH in mammary gland tissue remodeling.


Assuntos
Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Homeostase , Glândulas Mamárias Animais/metabolismo , Receptores LHRH/genética , Roedores/genética , Animais , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/metabolismo , Lactação/fisiologia , Ligantes , Especificidade de Órgãos , Gravidez , Prolactina/genética , Prolactina/metabolismo , RNA Mensageiro/metabolismo , Receptores LHRH/metabolismo , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Reprodução , Transdução de Sinais/efeitos dos fármacos
9.
Am J Physiol Endocrinol Metab ; 318(6): E901-E919, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32286880

RESUMO

Lack of GABAB receptors in GABAB1 knockout mice decreases neonatal ARC kisspeptin 1 (Kiss1) expression in the arcuate nucleus of the hypothalamus (ARC) in females, which show impaired reproduction as adults. Our aim was to selectively impair GABAB signaling during a short postnatal period to evaluate its impact on the reproductive system. Neonatal male and female mice were injected with the GABAB antagonist CGP 55845 (CGP, 1 mg/kg body wt sc) or saline from postnatal day 2 (PND2) to PND6, three times per day (8 AM, 1 PM, and 6 PM). One group was killed on PND6 for collection of blood samples (hormones by radioimmunoassay), brains for gene expression in the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN), and ARC micropunches [quantitative PCR (qPCR)] and gonads for qPCR, hormone contents, and histology. A second group of mice was injected with CGP (1 mg/kg body wt sc) or saline from PND2 to PND6, three times per day (8 AM, 1 PM, and 6 PM), and left to grow to adulthood. We measured body weight during development and parameters of sexual differentiation, puberty onset, and estrous cycles. Adult mice were killed, and trunk blood (hormones), brains for qPCR, and gonads for qPCR and hormone contents were obtained. Our most important findings on PND6 include the CGP-induced decrease in ARC Kiss1 and increase in neurokinin B (Tac2) in both sexes; the decrease in AVPV/PeN tyrosine hydroxylase (Th) only in females; the increase in gonad estradiol content in both sexes; and the increase in primordial follicles and decrease in primary and secondary follicles. Neonatally CGP-treated adults showed decreased ARC Kiss1 and ARC gonadotropin-releasing hormone (Gnrh1) and increased ARC glutamic acid decarboxylase 67 (Gad1) only in males; increased ARC GABAB receptor subunit 1 (Gabbr1) in both sexes; and decreased AVPV/PeN Th only in females. We demonstrate that ARC Kiss1 expression is chronically downregulated in males and that the normal sex difference in AVPV/PeN Th expression is abolished. In conclusion, neonatal GABAergic input through GABAB receptors shapes gene expression of factors critical to reproduction.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipotálamo Anterior/metabolismo , Receptores de GABA-B/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Estradiol/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Antagonistas de Receptores de GABA-B/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo Anterior/efeitos dos fármacos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ácidos Fosfínicos/farmacologia , Propanolaminas/farmacologia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Puberdade/efeitos dos fármacos , Puberdade/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de GABA-B/genética , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Reprodução/efeitos dos fármacos , Reprodução/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Diferenciação Sexual/efeitos dos fármacos , Diferenciação Sexual/genética , Taquicininas/genética , Taquicininas/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
10.
J Steroid Biochem Mol Biol ; 200: 105627, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32070756

RESUMO

The South American plains vizcacha, Lagostomus maximus, is the only mammal described so far that shows expression of estrogen receptors (ERs) and progesterone receptors (PRs) in gonadotropin-releasing hormone (GnRH) neurons. This animal therefore constitutes an exceptional model for the study of the effect of steroid hormones on the modulation of the hypothalamic-pituitary-ovarian (HPO) axis. By using both in vivo and ex vivo approaches, we have found that pharmacological doses of progesterone (P4) and estradiol (E2) produced an inhibition in the expression of hypothalamic GnRH, while physiological doses produced a differential effect on the pulsatile release frequency or genomic expression of GnRH. Our ex vivo experiment indicates that a short-term effect of E2 modulates the frequency of GnRH release pattern that would be associated with membrane ERs. On the other hand, our in vivo approach suggests that a long-term effect of E2, acting through the classical nuclear ERs-PRs pathway, would produce the modification of GnRH mRNA expression during the GnRH pre-ovulatory surge. Particularly, P4 induced a rise in GnRH mRNA expression and protein release with a decrease in its release frequency. These results suggest different levels of action of steroid hormones on GnRH modulation. We conclude that the fine action of E2 and P4 constitute the key factor to enable the hypothalamic activity during the pregnancy of this mammal.


Assuntos
Estradiol/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Progesterona/farmacologia , Animais , Estradiol/sangue , Feminino , Hormônio Liberador de Gonadotropina/genética , Sistema Hipotálamo-Hipofisário , Hipotálamo/metabolismo , Hormônio Luteinizante/metabolismo , Ovariectomia , Ovário , Progesterona/sangue , Roedores
11.
J Neuroendocrinol ; 31(8): e12765, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31269532

RESUMO

Female mice lacking GABAB receptors, GABAB1KO, show disrupted oestrous cycles, reduced pregnancies and increased hypothalamic Gnrh1 mRNA expression, whereas anteroventral periventricular/periventricular preoptic nucleus (AVPV/PeN) Kiss1 mRNA was not affected. In the present study, we characterise the important components of the gonadotrophic preovulatory surge, aiming to unravel the origin of this reproductive impairment. In GABAB1KO and wild-type (WT) females, we determined: (i) hypothalamic oestrogen receptor (ER)α and ß and aromatase mRNA and protein expression; (ii) ovulation index and oestrus serum follicle-stimulating hormone (FSH) and pituitary Gnrh1r expression; (iii) in ovariectomised-oestradiol valerate-treated mice, we evaluated ex vivo hypothalamic gonadotrophin-releasing hormone (GnRH) pulsatility in the presence/absence of kisspeptin (Kiss-10, constant or pulsatile) and oestradiol (constant); and (iv) in ovariectomised-oestradiol silastic capsule-treated mice (proestrous-like environment), we evaluated morning and evening kisspeptin neurone activation (c-Fos+) and serum luteinising homrone (LH). In the medial basal hypothalamus of oestrus GABAB1KOs, aromatase and ERα mRNA and protein were increased, whereas ERß was decreased. In GABAB1KOs, the ovulation index was decreased together with decreased first oestrus serum FSH and increased pituitary Gnrh1r mRNA. Under constant Kiss-10 stimulation, hypothalamic GnRH pulse frequency did not vary, although GnRH mass/pulse was increased in GABAB1KOs. In WTs, pulsatile Kiss-10 together with constant oestradiol significantly increased GnRH pulsatility, whereas, in GABAB1KOs, oestradiol alone increased GnRH pulsatility and this was reversed by pulsatile Kiss-10 addition. In GABAB1KOs AVPV/PeN kisspeptin neurones were similarly activated (c-Fos+) in the morning and evening, whereas WTs showed the expected, marked evening stimulation. LH correlated with activated kisspeptin cells in WT mice, whereas GABAB1KO mice showed high, similar LH levels both in the morning and evening. Taken together, all of these alterations point to impairment in the trigger of the preovulatory GnRH surge that entails the reproductive alterations described.


Assuntos
Ciclo Estral/sangue , Ciclo Estral/genética , Hormônio Luteinizante/sangue , Inibição da Ovulação , Receptores de GABA-B/genética , Animais , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Liberador de Gonadotropina/sangue , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Ovulação/sangue , Ovulação/genética , Inibição da Ovulação/sangue , Inibição da Ovulação/genética , Regulação para Cima/genética
12.
J Nutr Biochem ; 71: 27-34, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31272029

RESUMO

The aims of the present work were to study the effect of maternal overweight on both the count and quality of sperm of the offspring and to assess whether this maternal condition is able to alter testicular integrity and spermatogenic process. To this end, male offspring from rats fed a standard (OSD) or cafeteria (OCD) diet were used. Body and testis weight, length, preputial separation and ano-genital distance (AGD) were recorded and testes were removed at 60 days of age. In addition, the number of germ, Leydig and Sertoli cells, spermatogenesis and sperm integrity were examined. The OCD rats were divided into two groups: offspring from rats with 25% and≥35% of overweight (OCD25 and OCD35, respectively). Both OCD groups showed higher body and testis weight, higher length, and greater AGD than OSD rats. OCD25 also showed early preputial separation and OCD35 exhibited a high level of testosterone with normal glycemia. Both OCD25 and OCD35 rats had a lower number of spermatozoa and Leydig cells than OSD rats, and OCD35 also exhibited a lower number of spermatogonia and Sertoli cells than OSD rats. In addition, both OCD groups exhibited lower number of sperm cells with normal morphology and sperm motility, and OCD35 showed changes in both the seminiferous epithelium and spermatogenic process. These results suggest that maternal overweight severely affects the reproductive capacity of male offspring, likely leading to a subfertility condition and a premature reduction of the reproductive life span.


Assuntos
Sobrepeso , Maturidade Sexual/fisiologia , Espermatozoides/fisiologia , Testículo/crescimento & desenvolvimento , Animais , Peso Corporal , Feminino , Masculino , Mães , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos Sprague-Dawley , Células de Sertoli , Espermatogênese , Testículo/citologia , Testosterona/metabolismo
13.
Reproduction ; 157(6): R225-R233, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30844750

RESUMO

Neuroendocrine control of reproduction involves the interplay of various factors that become active at some point along development. GnRH is the main neurohormone controlling reproduction and among the most important inputs modulating GnRH synthesis/secretion are GABA and kisspeptins. These interactions of GABA and kisspeptin in the control of GnRH secretion can take place by the presence of the receptors of both factors on the GnRH neuron or alternatively by the actions of GABA on kisspeptin neurons and/or the actions of kisspeptin on GABA neurons. Kisspeptin acts on the Kiss1R, a seven transmembrane domain, Gαq/11-coupled receptor that activates phospholipase C, although some Gαq/11-independent pathways in mediating part of the effects of Kiss1R activation have also been proposed. GABA acts through two kinds of receptors, ionotropic GABAA/C receptors involving a chloride channel and associated with fast inhibitory/stimulatory conductance and metabotropic GABAB receptors (GABABR) that are Gi/0 protein linked inducing late slow hyperpolarization. In this review, we aim to summarize the different ways in which these two actors, kisspeptin and GABA, interact to modulate GnRH secretion across the reproductive lifespan.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Receptores de Kisspeptina-1/metabolismo , Reprodução/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Humanos
14.
Gen Comp Endocrinol ; 273: 40-51, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29656043

RESUMO

The South American plains vizcacha, Lagostomus maximus, is a caviomorph rodent native from Argentina, Bolivia and Paraguay. It shows peculiar reproductive features like pre-ovulatory follicle recruitment during pregnancy with an ovulatory process at around mid-gestation. We have described the activation of the hypothalamic - pituitary - ovarian (HPO) axis during pregnancy. A progressive decrease of progesterone (P4) at mid-pregnancy elicits the delivery of gonadotropin-releasing hormone (GnRH) with the consequent secretion of follicle stimulating hormone (FSH) and estradiol (E2) followed by luteinizing hormone (LH) release resulting in follicular luteinization and the P4 concentration recover. Pituitary gland is the central regulator of the HPO axis being E2 a key hormone involved in the regulation of its activity. In this work we analyzed the action of E2 on the pituitary response to the GnRH wave as well as its involvement on LH secretion at mid-gestation in L. maximus. The expression of GnRHR at the pituitary pars distalis showed a significant decrease at mid-pregnancy compared to early- and term-gestating females. ERα showed a significant increment from mid-gestation whereas ERß did not show variations throughout pregnancy; whereas the LH expression in the pituitary pars distalis showed a significant increase at mid-gestation, concordantly with serum LH, which was followed by a decrease at term-gestation with similar values than at early-pregnancy. The number of cells with co-localization of ERα and GnRHR showed a decline at mid-pregnancy related to early- and term-gestation, whereas the cells with co-localization of ERα and LH increased at mid- and term-pregnancy. On the other hand, ex vivo measuring of LH pulsatility showed a significant increment in the total mass of LH delivered at mid-pregnancy followed by a decrease at term-gestation. The stimulation of ERα with the PPT specific agonist induced a significant increment in the total mass of LH released, whereas no changes were determined when ERß was stimulated with its specific agonist MPP. These results suggest that LH pulsatility rise at mid-pregnancy would be enabled by the increase of E2 acting through ERα.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Hormônio Luteinizante/metabolismo , Hipófise/metabolismo , Roedores/metabolismo , Animais , Antineoplásicos Hormonais , Receptor beta de Estrogênio/metabolismo , Feminino , Adeno-Hipófise/metabolismo , Gravidez , Receptores LHRH/metabolismo
15.
Mol Neurobiol ; 56(7): 5075-5094, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30474797

RESUMO

Adolescence is a transitional period from childhood to adulthood characterized by puberty and brain maturation involving behavioral changes and environmental vulnerability. Diet is one of the factors affecting brain health, potentially leading to long-lasting effects. Hence, we studied the impact of early exposure (P21-60) to a high-fat diet (HFD) on mouse hippocampus, analyzing inflammation, adult neurogenesis, dendritic spine plasticity, and spatial memory. Glycemia and seric pro-inflammatory IL1ß were higher in HFD mice without differences on body weight. In the HFD hippocampus, neuroinflammation was evidenced by Iba1+ cells reactivity together with a higher expression of TNFα and IL1ß while the neurogenic capability in the dentate gyrus was strongly reduced. We found a predominance of immature Dil-labeled dendritic spines from CA1 neurons along with diminished levels of the scaffold protein Shank2, suggesting a defective connectivity. Moreover, the HFD group exhibited spatial memory alterations. To elucidate whether microglia could be mediating HFD-associated neuronal changes, the lipotoxic context was emulated by incubating primary microglia with palmitate, a saturated fatty acid present in HFD. Palmitate induced a pro-inflammatory profile as shown by secreted cytokine levels. The isolated exosome fraction from palmitate-stimulated microglia induced an immature dendritic spine phenotype in primary GFP+ hippocampal neurons, in line with the in vivo findings. These results provide novel data concerning microglia to neuron communication and highlight that fat excess during a short and early period of life could negatively impact on cognition and synaptic plasticity in a neuroinflammatory context, where microglia-derived exosomes could be implicated. Graphical Abstract ᅟ.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Fatores Etários , Animais , Células Cultivadas , Exossomos/patologia , Vesículas Extracelulares/patologia , Hipocampo/patologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Neurogênese/fisiologia
16.
Endocrinology ; 159(9): 3389-3402, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107405

RESUMO

Kisspeptin, encoded by Kiss1, activates reproduction by stimulating GnRH neurons. Although most Kiss1 neurons are located in the hypothalamus, smaller Kiss1 populations also reside in the medial amygdala (MeA), bed nucleus of the stria terminalis (BnST), and lateral septum (LS). However, very little is known about the regulation and function of these extra-hypothalamic Kiss1 neurons. This study focused on the roles and interactions of two signaling factors, estradiol (E2) and GABA, known to stimulate and inhibit, respectively, extra-hypothalamic Kiss1 expression. First, using estrogen receptor (ER)α knockout (KO) and ßERKO mice, we demonstrated that Kiss1 in both the BnST and LS is stimulated by E2, as occurs in the MeA, and that this E2 upregulation occurs via ERα, but not ERß. Second, using GABABR KO and wild-type mice, we determined that whereas E2 normally increases extra-hypothalamic Kiss1 levels, such upregulation by E2 is further enhanced by the concurrent absence of GABABR signaling in the MeA and LS, but not the BnST. Third, we demonstrated that when GABABR signaling is absent, the additional removal of gonadal sex steroids does not abolish Kiss1 expression in the MeA and BnST, and in some cases the LS. Thus, Kiss1 expression in these extra-hypothalamic regions is not solely dependent on E2 stimulation. Finally, we demonstrated a significant positive correlation between Kiss1 levels in the MeA, BnST, and LS, but not between these regions and the hypothalamus (anteroventral periventricular nucleus/periventricular nucleus). Collectively, our findings indicate that both E2 and GABA independently regulate all three extra-hypothalamic Kiss1 populations, but their regulatory interactions may vary by brain region and additional yet-to-be-identified factors are likely involved.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Kisspeptinas/genética , Neurônios/efeitos dos fármacos , Receptores de GABA-B/metabolismo , Núcleos Septais/efeitos dos fármacos , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Animais , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Feminino , Kisspeptinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Núcleos Septais/citologia , Núcleos Septais/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
17.
Toxicol Lett ; 285: 81-86, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29305326

RESUMO

Bisphenol A (BPA) is a component of polycarbonate plastics, epoxy resins and polystyrene found in many common products. Several reports revealed potent in vivo and in vitro effects. In this study we analyzed the effects of the exposure to BPA in the hypothalamic-pituitary-thyroid axis in female rats, both in vivo and in vitro. Female Sprague-Dawley rats were injected sc from postnatal day 1 (PND1) to PND10 with BPA: 500 µg 50 µl-1 oil (B500), or 50 µg 50 µl-1 (B50), or 5 µg 50 µl-1 (B5). Controls were injected with 50 µl vehicle during the same period. Neonatal exposure to BPA did not modify TSH levels in PND13 females, but it increased them in adults in estrus. Serum T4 was lower in B5 and B500 with regards to Control, whereas no difference was seen in T3. No significant differences were observed in TRH, TSHß and TRH receptor expression between groups. TSH release from PPC obtained from adults in estrus was also higher in B50 with regard to Control. In vitro 24 h pre-treatment with BPA or E2 increased basal TSH as well as prolactin release. On the other hand, both BPA and E2 lowered the response to TRH. The results presented here show that the neonatal exposure to BPA alters the hypothalamic pituitary-thyroid axis in adult rats in estrus, possibly with effects on the pituitary and thyroid. They also show that BPA alters TSH release from rat PPC through direct actions on the pituitary.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Hipotálamo/efeitos dos fármacos , Fenóis/toxicidade , Hipófise/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Envelhecimento/sangue , Envelhecimento/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Ratos Sprague-Dawley , Receptores do Hormônio Liberador da Tireotropina/genética , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Glândula Tireoide/crescimento & desenvolvimento , Glândula Tireoide/metabolismo , Tireotropina/sangue , Tireotropina/genética , Hormônio Liberador de Tireotropina/sangue
18.
Peptides ; 99: 117-127, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28442349

RESUMO

Orexins A/B derived from hypothalamic prepro-orexin (PPO) are agonists for orexin receptors 1 (OX1) and 2 (OX2). Previously, we showed clear sex differences in the hypothalamic-pituitary-gonadal orexinergic system in adult rodents. Here, we studied the effect of sexual brain differentiation on the orexinergic system in neuroendocrine structures regulating reproduction. We evaluated: a: proestrous and neonatally androgenized female rats; b: adult males, untreated or gonadectomized in adulthood and injected with oil or estradiol and progesterone (E2/P4); c: control and demasculinized males (perinatally treated with flutamide and later castration) injected either with oil or E2/P4 in adulthood. Rats were sacrificed at 12:00 and 18:00h; blood samples and brains were collected. Hormones were measured using radioimmunoassay. PPO, OX1 and OX2 mRNAs were quantified by qPCR in medial basal hypothalamus, anterior hypothalamus, adenohypophysis, and cortex. Western blots for OX1 were done in the same structures. In normal females, gonadotropins surged at 18:00h coinciding with significant elevations of PPO, OX1 and OX2 mRNAs and OX1 protein in hypothalamus and pituitary; no increases were observed at noon. Afternoon changes were absent in masculinized females. Demasculinized males when treated with E2/P4 showed high PPO, OX1 and OX2 mRNAs and OX1 protein expression in hypothalamus and pituitary at 12:00 and 18:00h compared vehicle-treated controls. The same steroid treatment was ineffective in males with normal brain masculinization. Here we show that neonatal testosterone shapes the sexual differences in the hypothalamic-pituitary orexinergic system in synchronicity to establishing the brain sex differences of the reproductive axis. The female brain controls gonadotropin surges and concurrent elevations of all studied components of the orexinergic system, suggesting its participation as a possible link between food intake, behavior and hormonal control of reproduction.


Assuntos
Hipotálamo/metabolismo , Receptores de Orexina/biossíntese , Orexinas/metabolismo , Adeno-Hipófise/metabolismo , Caracteres Sexuais , Testosterona/metabolismo , Animais , Estradiol/metabolismo , Feminino , Masculino , Progesterona/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Physiol Rep ; 5(19)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29038356

RESUMO

Females of the South American plains vizcacha, Lagostomus maximus, show peculiar reproductive features such as massive polyovulation up to 800 oocytes per estrous cycle and an ovulatory process around mid-gestation arising from the reactivation of the hypothalamic-hypophyseal-ovary (H.H.O.) axis. Estradiol (E2) regulates gonadotropin-releasing hormone (GnRH) expression. Biosynthesis of estrogens results from the aromatization of androgens by aromatase, which mainly occurs in the gonads, but has also been described in the hypothalamus. The recently described correlation between GnRH and ERα expression patterns in the hypothalamus of the vizcacha during pregnancy, with coexpression in the same neurons of the medial preoptic area, suggests that hypothalamic synthesis of E2 may affect GnRH neurons and contribute with systemic E2 to modulate GnRH delivery during the gestation. To elucidate this hypothesis, hypothalamic expression and the action of aromatase on GnRH release were evaluated in female vizcachas throughout pregnancy. Aromatase and GnRH expression was increased significantly in mid-pregnant and term-pregnant vizcachas compared to early-pregnant and nonpregnant females. In addition, aromatase and GnRH were colocalized in neurons of the medial preoptic area of the hypothalamus throughout gestation. The blockage of the negative feedback of E2 induced by the inhibition of aromatase resulted in a significant increment of GnRH-secreted mass by hypothalamic explants. E2 produced in the same neurons as GnRH may drive intracellular E2 to higher levels than those obtained from systemic circulation alone. This may trigger for a prompt GnRH availability enabling H.H.O. activity at mid-gestation with ovulation and formation of accessory corpora lutea with steroidogenic activity that produce the necessary progesterone to maintain gestation to term and guarantee the reproductive success.


Assuntos
Estradiol/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Gravidez/metabolismo , Animais , Aromatase/metabolismo , Retroalimentação Fisiológica , Feminino , Hipotálamo/citologia , Neurônios/metabolismo , Roedores
20.
World J Stem Cells ; 9(3): 45-67, 2017 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-28396715

RESUMO

The immune responses of humans and animals to insults (i.e., infections, traumas, tumoral transformation and radiation) are based on an intricate network of cells and chemical messengers. Abnormally high inflammation immediately after insult or abnormally prolonged pro-inflammatory stimuli bringing about chronic inflammation can lead to life-threatening or severely debilitating diseases. Mesenchymal stem cell (MSC) transplant has proved to be an effective therapy in preclinical studies which evaluated a vast diversity of inflammatory conditions. MSCs lead to resolution of inflammation, preparation for regeneration and actual regeneration, and then ultimate return to normal baseline or homeostasis. However, in clinical trials of transplanted MSCs, the expectations of great medical benefit have not yet been fulfilled. As a practical alternative to MSC transplant, a synthetic drug with the capacity to boost endogenous MSC expansion and/or activation may also be effective. Regarding this, IMT504, the prototype of a major class of immunomodulatory oligonucleotides, induces in vivo expansion of MSCs, resulting in a marked improvement in preclinical models of neuropathic pain, osteoporosis, diabetes and sepsis. IMT504 is easily manufactured and has an excellent preclinical safety record. In the small number of patients studied thus far, IMT504 has been well-tolerated, even at very high dosage. Further clinical investigation is necessary to demonstrate the utility of IMT504 for resolution of inflammation and regeneration in a broad array of human diseases that would likely benefit from an immunoprotective/immunoregenerative therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...