Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 17(1): 113, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143561

RESUMO

BACKGROUND: The yeast Starmerella bombicola is renowned for its highly efficient sophorolipid production, reaching titers and productivities of (over) 200 g/L and 2 g/(L h), respectively. This inherent efficiency has led to the commercialization of sophorolipids. While the sophorolipid biosynthetic pathway has been elucidated a few years ago, in this study, it is revisited and true key intermediates are revealed. RESULTS: Recently, Starmerella bombicola strains developed and evaluated in the past were reevaluated unveiling unexpected findings. The AT enzyme encoded in the sophorolipid biosynthetic gene cluster is the only described enzyme known to acetylate sophorolipids, while the SBLE enzyme encoded by the SBLE gene is described to catalyze the conversion of (acetylated) acidic sophorolipids into lactonic sophorolipids. A double knockout of both genes was described to result in the generation of bolaform sophorolipids. However, new experiments performed with respective S. bombicola strains Δsble, Δat Δsble, and ∆at revealed inconsistencies with the current understanding of the SL pathway. It was observed that the ∆sble strain produces mainly bolaform sophorolipids with higher acetylation degrees instead of acidic sophorolipids. Furthermore, the ∆at strain produces predominantly bolaform sophorolipids and lactonic sophorolipids with lower acetylation degrees, while the ∆at ∆sble strain predominantly produces bolaform sophorolipids with lower acetylation degrees. These results indicate that the AT enzyme is not the only enzyme responsible for acetylation of sophorolipids, while the SBLE enzyme performs an intramolecular transesterification reaction on bolaform glycolipids instead of an esterification reaction on acidic sophorolipids. These findings, together with recent in vitro data, led us to revise the sophorolipid biosynthetic pathway. CONCLUSIONS: Bolaform sophorolipids instead of acidic sophorolipids are the key intermediates in the biosynthetic pathway towards lactonic sophorolipids. Bolaform sophorolipids are found in very small amounts in extracellular S. bombicola wild type broths as they are very efficiently converted into lactonic sophorolipids, while acidic sophorolipids build up as they cannot be converted. Furthermore, acetylation of sophorolipids is not exclusively performed by the AT enzyme encoded in the sophorolipid biosynthetic gene cluster and acetylation of bolaform sophorolipids promotes their transesterification. These findings led to the revision of the industrially relevant sophorolipid biosynthetic pathway.

2.
Biotechnol Biofuels Bioprod ; 17(1): 89, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937850

RESUMO

BACKGROUND: Sophorolipids (SLs) are a class of natural, biodegradable surfactants that found their way as ingredients for environment friendly cleaning products, cosmetics and nanotechnological applications. Large-scale production relies on fermentations using the yeast Starmerella bombicola that naturally produces high titers of SLs from renewable resources. The resulting product is typically an extracellular mixture of acidic and lactonic congeners. Previously, we identified an esterase, termed Starmerella bombicola lactone esterase (SBLE), believed to act as an extracellular reverse lactonase to directly use acidic SLs as substrate. RESULTS: We here show based on newly available pure substrates, HPLC and mass spectrometric analysis, that the actual substrates of SBLE are in fact bola SLs, revealing that SBLE actually catalyzes an intramolecular transesterification reaction. Bola SLs contain a second sophorose attached to the fatty acyl group that acts as a leaving group during lactonization. CONCLUSIONS: The biosynthetic function by which the Starmerella bombicola 'lactone esterase' converts acidic SLs into lactonic SLs should be revised to a 'transesterase' where bola SL are the true intermediate. This insights paves the way for alternative engineering strategies to develop designer surfactants.

3.
FEMS Yeast Res ; 20(3)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32329773

RESUMO

Starmerella bombicola very efficiently produces the secondary metabolites sophorolipids (SLs). Their biosynthesis is not-growth associated and highly upregulated in the stationary phase. Despite high industrial and academic interest, the underlying regulation of SL biosynthesis remains unknown. In this paper, potential regulation of SL biosynthesis through the telomere positioning effect (TPE) was investigated, as the SL gene cluster is located adjacent to a telomere. An additional copy of this gene cluster was introduced elsewhere in the genome to investigate if this results in a decoy of regulation. Indeed, for the new strain, the onset of SL production was shifted to the exponential phase. This result was confirmed by RT-qPCR analysis. The TPE effect was further investigated by developing and applying a suitable reporter system for this non-conventional yeast, enabling non-biased comparison of gene expression between the subtelomeric CYP52M1- and the URA3 locus. This was done with a constitutive endogenous promotor (pGAPD) and one of the endogenous promotors of the SL biosynthetic gene cluster (pCYP52M1). A clear positioning effect was observed for both promotors with significantly higher GFP expression levels at the URA3 locus. No clear GFP upregulation was observed in the stationary phase for any of the new strains.


Assuntos
Regulação Fúngica da Expressão Gênica , Família Multigênica , Ácidos Oleicos/biossíntese , Ácidos Oleicos/genética , Saccharomycetales/genética , Metabolismo Secundário , Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA