Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099301

RESUMO

The avifauna of South America is one of the most widely studied groups of vertebrates. However, certain species, such as the Andean Ibis (Theristicus branickii), have received limited attention regarding their ecological patterns, biology, current distribution, and environmental requirements. This study analyzed observation data from the Global Biodiversity Information Facility (GBIF) on the Andean Ibis in four countries to identify and understand critical variables that determine the species' presence, assess the proportion of its habitat within protected areas and identify possible threats to the species. Additionally, this study considered environmental and ecological variables to model ecological niches using the maximum entropy approach in MaxEnt to map the suitable habitat of the species. The findings revealed the extent of suitable Andean Ibis habitats in Ecuador, Peru, Bolivia and Chile. The variables that most determined the presence of the species were: altitude (36.57%), distance to lakes (23.29%) and ecological isothermality (13.34%). The distribution area of the Andean Ibis totaled 300,095.00 km2, spanning both sides of the Andean mountains range. Human activities have left a significant impact on the Andean Ibis habitat, with 48% of this area impacted by the human footprint and only 10% of the territory falling within protected areas designated by the respective countries. The results of this study show that the Andean Ibis presents characteristics of a specialist species due to its adaptation to the climate conditions of the plateau and highlands, including low temperatures, herbaceous vegetation and the presence of water bodies. The species is distributed in disconnected Andean landscape areas, whose functionality could be compromised by increased human activities. Complementary studies will be necessary to understand the ecological role and effectiveness of protected areas for conserving the species.


Assuntos
Aves , Animais , Humanos , Peru , Equador , Bolívia , Chile
2.
Genome Biol Evol ; 15(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37399326

RESUMO

Highly abundant proteins tend to evolve slowly (a trend called E-R anticorrelation), and a number of hypotheses have been proposed to explain this phenomenon. The misfolding avoidance hypothesis attributes the E-R anticorrelation to the abundance-dependent toxic effects of protein misfolding. To avoid these toxic effects, protein sequences (particularly those of highly expressed proteins) would be under selection to fold properly. One prediction of the misfolding avoidance hypothesis is that highly abundant proteins should exhibit high thermostability (i.e., a highly negative free energy of folding, ΔG). Thus far, only a handful of analyses have tested for a relationship between protein abundance and thermostability, producing contradictory results. These analyses have been limited by 1) the scarcity of ΔG data, 2) the fact that these data have been obtained by different laboratories and under different experimental conditions, 3) the problems associated with using proteins' melting energy (Tm) as a proxy for ΔG, and 4) the difficulty of controlling for potentially confounding variables. Here, we use computational methods to compare the free energy of folding of pairs of human-mouse orthologous proteins with different expression levels. Even though the effect size is limited, the most highly expressed ortholog is often the one with a more negative ΔG of folding, indicating that highly expressed proteins are often more thermostable.


Assuntos
Dobramento de Proteína , Proteínas , Animais , Humanos , Camundongos , Proteínas/genética , Proteínas/metabolismo
3.
Plant Cell ; 34(11): 4143-4172, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35961044

RESUMO

Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.


Assuntos
Brassica , Brassica/genética , Tetraploidia , Genoma de Planta/genética , Poliploidia , Diploide
4.
Genome Biol Evol ; 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35945673

RESUMO

Analyses in a number of organisms have shown that duplicated genes are less likely to be essential than singletons. This implies that genes can often compensate for the loss of their paralogs. However, it is unclear why the loss of some duplicates can be compensated by their paralogs, whereas the loss of other duplicates cannot. Surprisingly, initial analyses in mice did not detect differences in the essentiality of duplicates and singletons. Only subsequent analyses, using larger gene knockout datasets and controlling for a number of confounding factors, did detect significant differences. Previous studies have not taken into account the tissues in which duplicates are expressed. We hypothesized that in complex organisms, in order for a gene's loss to be compensated by one or more of its paralogs, such paralogs need to be expressed in at least the same set of tissues as the lost gene. To test our hypothesis, we classified mouse duplicates into two categories based on the expression patterns of their paralogs: "compensable duplicates" (those with paralogs expressed in all the tissues in which the gene is expressed) and "non-compensable duplicates" (those whose paralogs are not expressed in all the tissues where the gene is expressed). In agreement with our hypothesis, the essentiality of non-compensable duplicates is similar to that of singletons, whereas compensable duplicates exhibit a substantially lower essentiality. Our results imply that duplicates can often compensate for the loss of their paralogs, but only if they are expressed in the same tissues. Indeed, the compensation ability is more dependent on expression patterns than on protein sequence similarity. The existence of these two kinds of duplicates with different essentialities, which has been overlooked by prior studies, may have hindered the detection of differences between singletons and duplicates.

5.
Genome Biol Evol ; 14(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34894228

RESUMO

Despite the importance of effective population size (Ne) in evolutionary and conservation biology, it remains unclear what factors have an impact on this quantity. The Nearly Neutral Theory of Molecular Evolution predicts a faster accumulation of deleterious mutations (and thus a higher dN/dS ratio) in populations with small Ne; thus, measuring dN/dS ratios in different groups/species can provide insight into their Ne. Here, we used an exome data set of 1,550 loci from 45 species of marsupials representing 18 of the 22 extant families, to estimate dN/dS ratios across the different branches and families of the marsupial phylogeny. We found a considerable heterogeneity in dN/dS ratios among families and species, which suggests significant differences in their Ne. Furthermore, our multivariate analyses of several life-history traits showed that dN/dS ratios (and thus Ne) are affected by body weight, body length, and weaning age.


Assuntos
Características de História de Vida , Marsupiais , Animais , Evolução Molecular , Marsupiais/genética , Filogenia , Seleção Genética
6.
Sci Rep ; 11(1): 20508, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654859

RESUMO

Population genetic analyses can evaluate how evolutionary processes shape diversity and inform conservation and management of imperiled species. Taimen (Hucho taimen), the world's largest freshwater salmonid, is threatened, endangered, or extirpated across much of its range due to anthropogenic activity including overfishing and habitat degradation. We generated genetic data using high throughput sequencing of reduced representation libraries for taimen from multiple drainages in Mongolia and Russia. Nucleotide diversity estimates were within the range documented in other salmonids, suggesting moderate diversity despite widespread population declines. Similar to other recent studies, our analyses revealed pronounced differentiation among the Arctic (Selenge) and Pacific (Amur and Tugur) drainages, suggesting historical isolation among these systems. However, we found evidence for finer-scale structure within the Pacific drainages, including unexpected differentiation between tributaries and the mainstem of the Tugur River. Differentiation across the Amur and Tugur basins together with coalescent-based demographic modeling suggests the ancestors of Tugur tributary taimen likely diverged in the eastern Amur basin, prior to eventual colonization of the Tugur basin. Our results suggest the potential for differentiation of taimen at different geographic scales, and suggest more thorough geographic and genomic sampling may be needed to inform conservation and management of this iconic salmonid.


Assuntos
Distribuição Animal , Espécies em Perigo de Extinção , Variação Genética , Salmonidae/genética , Animais , Evolução Biológica , Conservação dos Recursos Naturais , Mongólia , Filogeografia , Rios , Federação Russa
7.
PLoS One ; 16(2): e0245895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33534823

RESUMO

Mycoplasma agassizii is a common cause of upper respiratory tract disease in Mojave desert tortoises (Gopherus agassizii). So far, only two strains of this bacterium have been sequenced, and very little is known about its patterns of genetic diversity. Understanding genetic variability of this pathogen is essential to implement conservation programs for their threatened, long-lived hosts. We used next generation sequencing to explore the genomic diversity of 86 cultured samples of M. agassizii collected from mostly healthy Mojave and Sonoran desert tortoises in 2011 and 2012. All samples with enough sequencing coverage exhibited a higher similarity to M. agassizii strain PS6T (collected in Las Vegas Valley, Nevada) than to strain 723 (collected in Sanibel Island, Florida). All eight genomes with a sequencing coverage over 2x were subjected to multiple analyses to detect single-nucleotide polymorphisms (SNPs). Strikingly, even though we detected 1373 SNPs between strains PS6T and 723, we did not detect any SNP between PS6T and our eight samples. Our whole genome analyses reveal that M. agassizii strain PS6T may be present across a wide geographic extent in healthy Mojave and Sonoran desert tortoises.


Assuntos
Clima Desértico , Variação Genética , Mycoplasma/genética , Mycoplasma/fisiologia , Tartarugas/parasitologia , Animais
8.
Mol Biol Evol ; 38(2): 393-404, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32898240

RESUMO

DNA cytosine methylation is central to many biological processes, including regulation of gene expression, cellular differentiation, and development. This DNA modification is conserved across animals, having been found in representatives of sponges, ctenophores, cnidarians, and bilaterians, and with very few known instances of secondary loss in animals. Myxozoans are a group of microscopic, obligate endoparasitic cnidarians that have lost many genes over the course of their evolution from free-living ancestors. Here, we investigated the evolution of the key enzymes involved in DNA cytosine methylation in 29 cnidarians and found that these enzymes were lost in an ancestor of Myxosporea (the most speciose class of Myxozoa). Additionally, using whole-genome bisulfite sequencing, we confirmed that the genomes of two distant species of myxosporeans, Ceratonova shasta and Henneguya salminicola, completely lack DNA cytosine methylation. Our results add a notable and novel taxonomic group, the Myxosporea, to the very short list of animal taxa lacking DNA cytosine methylation, further illuminating the complex evolutionary history of this epigenetic regulatory mechanism.


Assuntos
Evolução Biológica , Metilação de DNA , Myxozoa/genética , Animais , Citosina/metabolismo
9.
Front Genet ; 10: 1172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803242

RESUMO

Chicken have a considerable impact in South American rural household economy as a source of animal protein (eggs and meat) and a major role in cultural traditions (e.g., cockfighting, religious ceremonies, folklore). A large number of phenotypes and its heterogeneity are due to the multitude of environments (from arid to tropical rain forest and high altitude) and agricultural systems (highly industrialized to subsistence agriculture). This heterogeneity also represents the successive introduction of domestic chicken into this continent, which some consider predating Columbus' arrival to South America. In this study, we have used next-generation restriction site-associated DNA sequencing to scan for genome-wide variation across 145 South American chickens representing local populations from six countries of South America (Colombia, Brazil, Ecuador, Peru, Bolivia, and Chile). After quality control, the genotypes of 122,801 single nucleotide polymorphisms (SNPs) were used to assess the genomic diversity and interpopulation genetic relationship between those populations and their potential sources. The estimated population genetic diversity displayed that the gamefowl has the least diverse population (θπ = 0.86; θS = 0.70). This population is also the most divergent (F ST = 0.11) among the South American populations. The allele-sharing analysis and the admixture analysis revealed that the current diversity displayed by these populations resulted from multiple admixture events with a strong influence of the modern commercial egg-layer chicken (ranging between 44% and 79%). It also revealed an unknown genetic component that is mostly present in the Easter Island population that is also present in local chicken populations from the South American Pacific fringe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...