Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2401000, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773688

RESUMO

Visible light is a universal and user-friendly excitation source; however, its use to generate persistent luminescence (PersL) in materials remains a huge challenge. Herein, we apply the concept of intermolecular charge transfer (xCT) in typical host-guest molecular systems, which allows for a much lower energy requirement for charge separation, thus enabling efficient charging of near-infrared (NIR) PersL in organics by visible light (425-700 nm). Importantly, NIR PersL in organics occurs via the trapping of electrons from charge-transfer aggregates (CTAs) into constructed trap states with trap depths of 0.63-1.17 eV, followed by the detrapping of these electrons by thermal stimulation, resulting in a unique light-storage effect and long-lasting emission up to 4.6 h at room temperature. The xCT absorption range was modulated by changing the electron-donating ability of a series of acenaphtho[1,2-b]pyrazine-8,9-dicarbonitrile-based CTAs, and the organic PersL was tuned from 681 to 722 nm. This study on xCT interaction-induced NIR PersL in organic materials provides a major step forward in understanding the underlying luminescence mechanism of organic semiconductors and these findings are expected to promote their applications in optoelectronics, energy storage, and medical diagnosis. This article is protected by copyright. All rights reserved.

2.
Nat Commun ; 15(1): 4113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750029

RESUMO

Stretchable phosphorescence materials potentially enable applications in diverse advanced fields in wearable electronics. However, achieving room-temperature phosphorescence materials simultaneously featuring long-lived emission and good stretchability is challenging because it is hard to balance the rigidity and flexibility in the same polymer. Here we present a multiphase engineering for obtaining stretchable phosphorescent materials by combining stiffness and softness simultaneously in well-designed block copolymers. Due to the microphase separation, copolymers demonstrate an intrinsic stretchability of 712%, maintaining an ultralong phosphorescence lifetime of up to 981.11 ms. This multiphase engineering is generally applicable to a series of binary and ternary initiator systems with color-tunable phosphorescence in the visible range. Moreover, these copolymers enable multi-level volumetric data encryption and stretchable afterglow display. This work provides a fundamental understanding of the nanostructures and material properties for designing stretchable materials and extends the potential of phosphorescence polymers.

3.
Nat Commun ; 15(1): 2134, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459008

RESUMO

Dynamic luminescence behavior by external stimuli, such as light, thermal field, electricity, mechanical force, etc., endows the materials with great promise in optoelectronic applications. Upon thermal stimulus, the emission is inevitably quenched due to intensive non-radiative transition, especially for phosphorescence at high temperature. Herein, we report an abnormal thermally-stimulated phosphorescence behavior in a series of organic phosphors. As temperature changes from 198 to 343 K, the phosphorescence at around 479 nm gradually enhances for the model phosphor, of which the phosphorescent colors are tuned from yellow to cyan-blue. Furthermore, we demonstrate the potential applications of such dynamic emission for smart dyes and colorful afterglow displays. Our results would initiate the exploration of dynamic high-temperature phosphorescence for applications in smart optoelectronics. This finding not only contributes to an in-depth understanding of the thermally-stimulated phosphorescence, but also paves the way toward the development of smart materials for applications in optoelectronics.

4.
Angew Chem Int Ed Engl ; 63(14): e202319694, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38314961

RESUMO

Organic phosphors offer a promising alternative in optoelectronics, but their temperature-sensitive feature has restricted their applications in high-temperature scenarios, and the attainment of high-temperature phosphorescence (HTP) is still challenging. Herein, a series of organic cocrystal phosphors are constructed by supramolecular assembly with an ultralong emission lifetime of up to 2.16 s. Intriguingly, remarkable stabilization of triplet excitons can also be realized at elevated temperature, and green phosphorescence is still exhibited in solid state even up to 150 °C. From special molecular packing within the crystal lattice, it has been observed that the orientation of isolated water cluster and well-controlled molecular organization via multiple interactions can favor the structural rigidity of cocrystals more effectively to suppress the nonradiative transition, thus resulting in efficient room-temperature phosphorescence and unprecedented survival of HTP.

5.
Adv Mater ; 36(18): e2310663, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38267010

RESUMO

Organic phosphorescent scintillating materials have shown great potential for applications in radiography and radiation detection due to their efficient utilization of excitons. However, revealing the relationship between molecule stacking and the phosphorescent radioluminescence of scintillators is still challenging. This study reports on two phenothiazine derivatives with polymorphism-dependent phosphorescence radioluminescence. The experiments reveal that molecule stacking significantly affects the non-radiation decay of the triplet excitons of scintillators, which further determines the phosphorescence scintillation performance under X-ray irradiation. These phosphorescent scintillators exhibit high radio stability and have a low detection limit of 278 nGys-1. Additionally, the potential application of these scintillators in X-ray radiography, based on their X-ray excited radioluminescence properties, is demonstrated. These findings provide a guideline for obtaining high-performance phosphorescent scintillating materials by shedding light on the effect of crystal packing on the radioluminescence of organic molecules.

6.
ACS Appl Mater Interfaces ; 15(29): 35534-35542, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37449496

RESUMO

Poly(vinyl alcohol) (PVA) has been found as a wonderful matrix for chromophores to boost their room-temperature phosphorescence (RTP) character by forming abundant hydrogen bonding. Despite the well-utilized protective effect, the constructive role in accelerating the intersystem crossing is less investigated. Here, we focus on its role in manipulating the excited-state energy level to facilitate multiple intersystem crossing channels. Six benzoyl carbazole derivatives do not emit RTP in their solutions, powders, or crystals but exhibit significantly persistent RTP signals when embedded into the PVA matrix. Charge-transfer excited states were trapped by cofacial stacking in crystal, which blocks the intersystem crossing channels. In the PVA matrix, the allowed broad distribution of charge-transfer states covers the locally excited states, offering multiple intersystem crossing pathways via spin-vibronic orbit coupling. Consequently, efficient and persistent heavy-atom-free phosphors have been developed with the highest quantum yields of 7.7% and the longest lifetime of 2.3 s.

7.
Adv Mater ; 35(36): e2210489, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390483

RESUMO

Achieving multicolor organic afterglow materials with narrowband emission and high color purity is important in various optoelectronic fields but remains a great challenge. Here, an efficient strategy is presented to obtain narrowband organic afterglow materials via Förster resonance energy transfer from long-lived phosphorescence donors to narrowband fluorescence acceptors in a polyvinyl alcohol matrix. The resulting materials exhibit narrowband emission with a full width at half maximum (FWHM) as small as 23 nm and the longest lifetime of 721.22 ms. Meanwhile, by pairing the appropriate donors and acceptors, multicolor and high color purity afterglow ranging from green to red with the maximum photoluminescence quantum yield of 67.1% are achieved. Moreover, given their long luminescence lifetime, high color purity, and flexibility, the potential applications are demonstrated in high-resolution afterglow displays and dynamic and quick information identification in low-light conditions. This work provides a facile approach for developing multicolor and narrowband afterglow materials as well as expands the features of organic afterglow.

8.
Nat Commun ; 13(1): 3995, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810179

RESUMO

Scintillators that exhibit X-ray-excited luminescence have great potential in radiation detection, X-ray imaging, radiotherapy, and non-destructive testing. However, most reported scintillators are limited to inorganic or organic crystal materials, which have some obstacles in repeatability and processability. Here we present a facile strategy to achieve the X-ray-excited organic phosphorescent scintillation from amorphous copolymers through the copolymerization of the bromine-substituted chromophores and acrylic acid. These polymeric scintillators exhibit efficient X-ray responsibility and decent phosphorescent quantum yield up to 51.4% under ambient conditions. The universality of the design principle was further confirmed by a series of copolymers with multi-color radioluminescence ranging from green to orange-red. Moreover, we demonstrated their potential application in X-ray radiography. This finding not only outlines a feasible principle to develop X-ray responsive phosphorescent polymers, but also expands the potential applications of polymer materials with phosphorescence features.


Assuntos
Luminescência , Polímeros , Polimerização , Polímeros/química , Radiografia , Raios X
9.
Inorg Chem ; 61(27): 10402-10409, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35758415

RESUMO

Two tetradentate Pt(II) complexes with peripheral bulky-group hindrances [Pt(pzpyOczpy-B1) and Pt(pzpyOczpy-B2)] were synthesized and fully investigated for their structural and blue phosphorescent properties. Both X-ray crystallography and computational simulation revealed that bulky substituents incorporated into the C-pyrazolyl and C-pyridinyl positions lie out of the cyclometallated plane, thus alleviating the intramolecular distortions as well as reducing the intermolecular interaction in the solid state. In dichloromethane, their emission peaks at 460 nm with a narrow full width at half-maximum (FWHM) of less than 50 nm, and the photoluminescent quantum yields are over 95% with short decay lifetimes (<5 µs). Solution-processed blue devices are fabricated based on the two complexes. Device A based on Pt(pzpyOczpy-B1) shows excellent electroluminescent performances with the maximum current efficiency, power efficiency, and external quantum efficiency of 47.0 cd/A, 24.6 lm/W, and 22.9%, respectively. The understanding on inert peripheral hindrances provides an effective approach to designing Pt(II) complexes for high-quality blue phosphorescent emitters.

10.
Adv Mater ; 34(5): e2107612, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34806790

RESUMO

Room temperature phosphorescence (RTP) has been extensively researched in heavy-metal containing complexes and purely organic systems. Despite the rapid blossom of RTP materials, it is still a tremendous challenge to develop highly efficient blue RTP materials with long-lived lifetimes. Taking the metal-organic framework (MOF) as a model, herein, a feasible strategy of ligand functionalization is proposed, including two essential elements, to develop blue phosphorescence materials with high efficiency and long-lived lifetimes simultaneously under ambient conditions. One is isolation of the chromophores with assistance of another predefined co-ligands, the other is restriction of the chromophores' motions through coordination and host-guest interactions. Remarkably, it renders the MOFs with highly efficient blue phosphorescence up to 80.6% and a lifetime of 169.7 ms under ambient conditions. Moreover, a demo of the crown is fabricated with MOFs ink by 3D printing technique. The potential applications for anti-counterfeiting and fingerprint visualization have been also demonstrated. This finding not only outlines a universal principle to design and synthesize highly efficient RTP materials, but also endows traditional MOFs with fresh vitality for potential applications.

11.
Commun Chem ; 5(1): 60, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-36697942

RESUMO

Over the last 20 years, N-heterocyclic carbenes (NHCs) have emerged as a dominant direction in ligand development in transition metal catalysis. In particular, strong σ-donation in combination with tunable steric environment make NHCs to be among the most common ligands used for C-C and C-heteroatom bond formation. Herein, we report the study on steric and electronic properties of thiazol-2-ylidenes. We demonstrate that the thiazole heterocycle and enhanced π-electrophilicity result in a class of highly active carbene ligands for electrophilic cyclization reactions to form valuable oxazoline heterocycles. The evaluation of steric, electron-donating and π-accepting properties as well as structural characterization and coordination chemistry is presented. This mode of catalysis can be applied to late-stage drug functionalization to furnish attractive building blocks for medicinal chemistry. Considering the key role of N-heterocyclic ligands, we anticipate that N-aryl thiazol-2-ylidenes will be of broad interest as ligands in modern chemical synthesis.

12.
JACS Au ; 1(10): 1694-1699, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34723272

RESUMO

Purely organic room-temperature phosphorescence endowing very fast intersystem crossing from through-space systems has not been well investigated. Here we report three space-confined bridged phosphors, where phenothiazine is linked with dibenzothiophene, dibenzofuran, and carbazole by a 9,9-dimethylxanthene bridge. Nearly pure phosphorescence is observed in the crystals at room temperature. Interestingly, phosphorescence comes solely from the phenothiazine segment. Experimental results indicate that bridged counterparts of dibenzothiophene, dibenzofuran, and carbazole contribute as close-lying triplet states with locally excited (LE) character. The through-space spin-orbit coupling principle is proposed in these bridged systems, as their 1LE and 3LE states have intrinsic spatial overlap, degenerate energy levels, and tilting face-to-face alignment. The resulting effective through-space spin-orbit coupling leads to efficient intersystem crossing a with rate constant as high as 109 s-1 and an overwhelming triplet decay channel of the singlet excited state.

13.
J Am Chem Soc ; 143(44): 18527-18535, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704444

RESUMO

Organic optoelectronic functional materials featuring circularly polarized emission and persistent luminescence represent a novel research frontier and show promising applications in data encryption, displays, biological imaging, and so on. Herein, we present a simple and universal approach to achieve circularly polarized organic phosphorescence (CPP) from amorphous copolymers by the incorporation of axial chiral chromophores into polymer chains via radical cross-linked polymerization. Our experimental data reveal that copolymers (R/S)-PBNA exhibit a maximum CPP efficiency of 30.6% and the largest dissymmetric factor of 9.4 × 10-3 and copolymers (R/S)-PNA show the longest lifetime of 0.68 s under ambient conditions. Given the CPP property of these copolymers, their potential applications in multiple information encryption and displays are demonstrated, respectively. These findings not only lay the foundation for the development of amorphous polymers with superior CPP but also expand the outlook of room-temperature phosphorescent materials.

14.
Angew Chem Int Ed Engl ; 60(52): 27195-27200, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34532938

RESUMO

There are few reports about purely organic phosphorescence scintillators, and the relationship between molecular structures and radioluminescence in organic scintillators is still unclear. Here, we presented isomerism strategy to study the effect of molecular structures on radioluminescence. The isomers can achieve phosphorescence efficiency of up to 22.8 % by ultraviolet irradiation. Under X-ray irradiation, both m-BA and p-BA show excellent radioluminescence, while o-BA has almost no radioluminescence. Through experimental and theoretical investigation, we found that radioluminescence was not only affected by non-radiation in emissive process, but also highly depended on the material conductivity caused by the different molecular packing. This study not only allows us to clearly understand the relationship between the molecular structures and radioluminescence, but also provides a guidance to rationally design new organic scintillators.

15.
Nat Mater ; 20(11): 1539-1544, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34426660

RESUMO

High-efficiency blue phosphorescence emission is essential for organic optoelectronic applications. However, synthesizing heavy-atom-free organic systems having high triplet energy levels and suppressed non-radiative transitions-key requirements for efficient blue phosphorescence-has proved difficult. Here we demonstrate a simple chemical strategy for achieving high-performance blue phosphors, based on confining isolated chromophores in ionic crystals. Formation of high-density ionic bonds between the cations of ionic crystals and the carboxylic acid groups of the chromophores leads to a segregated molecular arrangement with negligible inter-chromophore interactions. We show that tunable phosphorescence from blue to deep blue with a maximum phosphorescence efficiency of 96.5% can be achieved by varying the charged chromophores and their counterions. Moreover, these phosphorescent materials enable rapid, high-throughput data encryption, fingerprint identification and afterglow display. This work will facilitate the design of high-efficiency blue organic phosphors and extend the domain of organic phosphorescence to new applications.


Assuntos
Conformação Molecular
16.
Chem Commun (Camb) ; 57(59): 7276-7279, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34196639

RESUMO

Three kinds of microstructures were prepared for one organic phosphor based on a solution-concentration-controlled self-assembly strategy. These microstructures show different phosphorescence efficiencies, which holds considerable promise for the miniaturized optical device applications of ultralong organic phosphorescence materials.

17.
ACS Appl Mater Interfaces ; 12(16): 18385-18394, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32212618

RESUMO

The development of novel applications of ultralong organic phosphorescent (UOP) materials is highly desired. Herein, a series of UOP materials (EDCz, E = O, S, Se, and Te) for bacterial afterglow imaging and photodynamic therapy (PDT) is reported. By structurally bonding with the chalcogen atoms with π-conjugated scaffolds, EDCz not only absorbs visible light but also emits UOP with an efficiency of ca. 0.01-6.8% and a long lifetime of 0.08-0.318 s under ambient conditions. Benefiting from the long-lived triplet excited states, the SeDCz nanocrystals (NCs) possessed the best optical properties in the series, generating 1O2 under white light irradiation and performing as an agent for Staphylococcus aureus afterglow imaging and PDT at a low concentration (98 ng mL-1). The SeDCz NCs are also utilized as real-time UOP imaging agents and promoted healing of infected wounds in living mice. To the best of our knowledge, this study presents the first example of UOP-based bacterial photodynamic theranostic agents and creates a platform for the next-generation efficient UOP-based photosensitizers for bioimaging and skin regeneration.


Assuntos
Substâncias Luminescentes/química , Nanopartículas/química , Imagem Óptica/métodos , Fotoquimioterapia/métodos , Animais , Calcogênios , Camundongos , Infecções Estafilocócicas , Staphylococcus aureus , Fatores de Tempo , Cicatrização
18.
Research (Wash D C) ; 2020: 8183450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32110780

RESUMO

Developing ultralong organic phosphorescence (UOP) materials with smart response to external stimuli is of great interest in photonics applications, whereas the manipulation of molecular stacking on tuning such dynamic UOP is still a formidable challenge. Herein, we have reported two polymorphs with distinct photoactivated dynamic UOP behavior based on a pyridine derivative for the first time. Our experiment revealed that the dynamic UOP behavior including photoactivation and deactivation feature is highly dependent on irradiation intensity and environmental atmosphere. Additionally, given the unique dynamic UOP feature, these phosphors have been successfully applied to phosphorescence-dependent molecular logic gate and timing data storage. This result not only paves a way to design smart functional materials but also expands the scope of the applications on organic phosphorescence materials.

19.
J Phys Chem Lett ; 10(17): 5105-5110, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31419133

RESUMO

Three Pt(II) complexes, Pt(czpyOczpy), Pt(czpyOczpy-Me), and Pt(czpyOczpy-OMe), are designed to elucidate the inherent relationship between electronically excited-state and photo- and electroluminescent properties. These complexes showed a blue-shifted phosphorescence with a narrowing spectral profile, which are interrelated with the variation of T1 states from the 3MLCT, hybridized 3(MLCT/LC) to 3LC transition. This change is ascribed to the destabilization of LUMO energy levels on the pyridinyl site, leading to more electron distribution on the carbazolide unit in T1. Moreover, the solution-processed device of Pt(czpyOczpy-OMe), featuring a 3LC transition, shows the best color purity of blue light. Compared to the device of Pt(czpyOczpy) with 3MLCT character, the device of Pt(czpyOczpy-Me) with hybridized 3(MLCT/LC) exhibits improved color purity and external quantum efficiency (10.2%) at a luminance of 1000 cd/m2. Therefore, this work gives a mechanistic interpretation of the phosphorescent properties of tetradentate Pt(II) complexes derived from the manageable lowest triplet excited states.

20.
Angew Chem Int Ed Engl ; 58(40): 14140-14145, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31359548

RESUMO

Provided here is evidence showing that the stacking between triplet chromophores plays a critical role in ultralong organic phosphorescence (UOP) generation within a crystal. By varying the structure of a functional unit, and different on-off UOP behavior was observed for each structure. Remarkably, 24CPhCz, having the strongest intermolecular interaction between carbazole units exhibited the most impressive UOP with a long lifetime of 1.06 s and a phosphorescence quantum yield of 2.5 %. 34CPhCz showed dual-emission UOP and thermally activated delayed fluorescence (TADF) with a moderately decreased phosphorescence lifetime of 770 ms, while 35CPhCz only displayed TADF owing to the absence of strong electronic coupling between triplet chromophores. This study provides an explanation for UOP generation in crystal and new guidelines for obtaining UOP materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...