Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401110, 2024 Jun 14.
Artigo em Catalão | MEDLINE | ID: mdl-38874051

RESUMO

For cancer metastasis inhibition, the combining of nanozymes with immune checkpoint blockade (ICB) therapy remains the major challenge in controllable reactive oxygen species (ROS) generation for creating effective immunogenicity. Herein, new nanozymes with light-controlled ROS production in terms of quantity and variety are developed by conjugating supramolecular-wrapped Fe single atom on iridium metallene with lattice-strained nanoislands (FeSA-Ir@PF NSs). The Fenton-like catalysis of FeSA-Ir@PF NSs effectively produced •OH radicals in dark, which induced ferroptosis and apoptosis of cancer cells. While under second near-infrared (NIR-II) light irradiation, FeSA-Ir@PF NSs showed ultrahigh photothermal conversion efficiency (𝜂, 75.29%), cooperative robust •OH generation, photocatalytic O2 and 1O2 generation, and caused significant pyroptosis of cancer cells. The controllable ROS generation, sequential cancer cells ferroptosis and pyroptosis, led 99.1% primary tumor inhibition and multi-immunogenic responses in vivo. Most importantly, the inhibition of cancer lung metastasis is completely achieved by FeSA-Ir@PF NSs with immune checkpoint inhibitors, as demonstrated in different mice lung metastasis models, including circulating tumor cells (CTCs) model. This work provided new inspiration for developing nanozymes for cancer treatments and metastasis inhibition.

2.
Nat Commun ; 15(1): 2365, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491012

RESUMO

It remains a challenge to obtain biocompatible afterglow materials with long emission wavelengths, durable lifetimes, and good water solubility. Herein we develop a photooxidation strategy to construct near-infrared afterglow carbon nanodots with an extra-long lifetime of up to 5.9 h, comparable to that of the well-known rare-earth or organic long-persistent luminescent materials. Intriguingly, size-dependent afterglow lifetime evolution from 3.4 to 5.9 h has been observed from the carbon nanodots systems in aqueous solution. With structural/ultrafast dynamics analysis and density functional theory simulations, we reveal that the persistent luminescence in carbon nanodots is activated by a photooxidation-induced dioxetane intermediate, which can slowly release and convert energy into luminous emission via the steric hindrance effect of nanoparticles. With the persistent near-infrared luminescence, tissue penetration depth of 20 mm can be achieved. Thanks to the high signal-to-background ratio, biological safety and cancer-specific targeting ability of carbon nanodots, ultralong-afterglow guided surgery has been successfully performed on mice model to remove tumor tissues accurately, demonstrating potential clinical applications. These results may facilitate the development of long-lasting luminescent materials for precision tumor resection.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Luminescência
3.
J Plast Reconstr Aesthet Surg ; 84: 595-604, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451235

RESUMO

PURPOSE: Surgical guide plates can improve the accuracy of surgery, although their design process is complex and time-consuming. This study aimed to use artificial intelligence (AI) to design standardized mandibular angle ostectomy guide plates and reduce clinician workload. METHODS: An intelligence algorithm was designed and trained to design guide plates, with a safety-ensuring penalty factor added. A single-center retrospective cohort study was conducted to test the algorithm among patients who had visited our hospital between 2020 and 2021 for mandibular angle ostectomy. We included patients diagnosed with mandibular angle hypertrophy and excluded those combined with other facial malformations. The guide plate design method acted as the primary predictor, which was AI algorithm vs. experienced residents. Moreover, the symmetry of plate-guided ostectomy was chosen as the primary outcome. The safety, shape, location, effectiveness, and design duration of the guide plate were also recorded. The independent samples t-test and Pearson's chi-squared test were used and P-values < 0.05 were considered significant. RESULTS: Fifty patients (7 men, 43 women; 27 ± 4 years) were included. The two groups differed significantly in terms of safety (7.02 vs. 5.25, P < 0.05) and design duration (24.98 vs. 1685.08, P < 0.05). The ostectomy symmetry and shape, location, and effectiveness of the guide plates did not differ significantly between the two groups. CONCLUSIONS: The intelligent algorithm can improve safety and save time for guide plate design, ensuring other quality of the guide plates. It has good potential applicability in accurate mandibular angle ostectomy.


Assuntos
Inteligência Artificial , Mandíbula , Masculino , Humanos , Feminino , Estudos Retrospectivos , Mandíbula/cirurgia , Placas Ósseas
4.
Nat Commun ; 14(1): 1310, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898989

RESUMO

Multiphoton excited luminescence is of paramount importance in the field of optical detection and biological photonics. Self-trapped exciton (STE) emission with self-absorption-free advantages provide a choice for multiphoton excited luminescence. Herein, multiphoton excited singlet/triplet mixed STE emission with a large full width at half-maximum (617 meV) and Stokes shift (1.29 eV) has been demonstrated in single-crystalline ZnO nanocrystals. Temperature dependent steady state, transient state and time-resolved electron spin resonance spectra demonstrate a mixture of singlet (63%) and triplet (37%) mixed STE emission, which contributes to a high photoluminescence quantum yield (60.5%). First-principles calculations suggest 48.34 meV energy per exciton stored by phonons in the distorted lattice of excited states, and 58 meV singlet-triplet splitting energy for the nanocrystals being consistent with the experimental measurements. The model clarifies long and controversial debates on ZnO emission in visible region, and the multiphoton excited singlet/triplet mixed STE emission is also observed.

5.
Biomaterials ; 289: 121812, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36152516

RESUMO

Cancer stem cells (CSCs) are the subpopulation of tumor cells with the properties of tumorigenesis, multilineage differentiation potential and self-renewal, which is the driving force of tumor recurrence and metastasis. However, targeting CSCs is still the main challenge in cancer therapy due to their rapid growth and fast mutation rate. Herein, we developed a simple strategy of photodynamic therapy (PDT) targeting CSCs, dependent on much more abundant ribosomes in CSCs. The interactions between positively charged nanoparticles with negatively charged nucleic acids architectures in cancer cells could lead ribosomes targeting as well as CSCs targeting. The co-assembly of simple amino porphyrin (m-TAPP) with short peptide (Fmoc-L3-OMe) formed nanoparticles (NPs) with good biocompatibility and photoactivity, became positively charged due to low pH value of tumour microenvironment, and efficiently accessed cancer cell ribosome, approached cancer cell nuclei, therefore enriched in the fast-amplifying CSCs. The inhibitive effect on CSCs by m-TAPP assemblies was verified by the significant reduction of CSCs markers CD44, CD133 and ribosome amount in cancer cells and tissues. Upon light irradiation, the NPs induced ROS generation to provoke destructive cancer cell ribosome damage and subsequent apoptosis to prevent tumor growth markedly. Based on the assemblies of small organic molecules, our study not only achieves ribosome degradation induced cancer cells apoptosis, but also indicates new possibility of performing CSCs targeting PDT.


Assuntos
Ácidos Nucleicos , Fotoquimioterapia , Porfirinas , Linhagem Celular Tumoral , Humanos , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Ácidos Nucleicos/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Porfirinas/metabolismo , Porfirinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ribossomos/metabolismo , Microambiente Tumoral
6.
J Phys Condens Matter ; 34(18)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100570

RESUMO

The search forsp3-hybridized carbon allotropes other than diamond has attracted extensive interest because of their fascinating properties. In this paper, an orthorhombic carbon phase insp3bonding, named pentaheptite diamond, by combining the particle swarm optimization method with first-principles calculations has been predicted. The phonon spectra, total energy and elastic constants calculations of the pentaheptite diamond confirm its dynamical, thermal and mechanical stability at zero pressure, respectively. It possesses a high bulk modulus of 385 GPa and Vickers hardness of 72.6 GPa, comparable to diamond. Electronic band structure calculations show that the pentaheptite diamond has a direct band gap of 4.18 eV.

7.
J Phys Chem Lett ; 12(16): 4079-4084, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33881881

RESUMO

Herein, the negative photoconductivity (NPC) effect has been observed in nanodiamonds (NDs) for the first time, and with illumination under a 660 nm laser lamp, the conductivity of the NDs decreases significantly. The NPC effect has been attributed to the trapping of carriers by the absorbed water molecules on the ND surfaces. A humidity sensor has been constructed based on the NPC effect of the NDs, and the sensitivity of the sensor can reach 106%, which is the highest value ever reported for carbon-based humidity sensors.

8.
Adv Sci (Weinh) ; 6(11): 1802331, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31179212

RESUMO

The various luminescent properties of carbon nanodots (CDs) reveal fascinating applications in several areas. Here, bright and multicolor chemiluminescence (CL) is realized from CDs, whose CL quantum yield can be optimized by adjusting the energy level alignment between the CDs and 1,2-dioxetanedione intermediate generated from the reaction of peroxalate and hydrogen peroxide. A CL quantum yield of 9.32 × 10-3 Einsteins mol-1, maximal luminance of 3.28 cd m-2, and lifetime of 186.4 s are achieved in red CDs, all of which are the best values ever reported for CDs. As a proof-of-concept prototype, a high-quality information encryption strategy is established via CD based CL imaging techniques by virtue of the high brightness and multicolor CL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA