Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(8): 11084-11093, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38362761

RESUMO

In this work, we investigate the freezing behavior and ice adhesion properties of sessile drops on micropillared superhydrophobic surfaces (SHSs) with various sizes, which are of practical importance for anti/deicing. First of all, it is demonstrated that the recalescence is related only to the supercooling degree of drops but not to the geometrical parameters of micropillars. The freezing time of sessile drops first increases and then decreases with the area fraction of the SHSs, which demonstrates the nonmonotonic dependence of the icing time on the area fraction. Moreover, the influence of the geometrical parameters of the micropillars on the ice adhesion is discussed. With the decrease of the substrate temperature, the wetting state of the adhesive ice can be transformed from the Cassie ice to the Wenzel ice. For the Cassie ice, the adhesive force is proportional to the area fraction of the SHSs. Interestingly, experimental results show that there exist two interfacial debonding modes of the Wenzel ice: translational debonding and rotational debonding. Furthermore, it is found that the rotational debonding mode contributes to a much lower adhesive force between the ice and the micropillared surface compared to that of the translational debonding mode. By analyzing the critical interfacial energy release rate of the two modes, we deduce the threshold between the two modes, which is quantified as the geometrical parameters of the micropillars. In addition, quantitative relations between the geometrical parameters and the adhesion strengths of the two modes are also obtained. We envision that this work would shed new light on the design optimization of anti/deicing materials.

2.
Small ; 20(15): e2308312, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37992249

RESUMO

Flexible and stretchable electronics have attractive applications inaccessible to conventional rigid electronics. However, the mainstream transfer printing techniques have challenges for electronic films in terms of thickness and size and limitations for target substrates in terms of curvature, depth, and interfacial adhesion. Here a facile, damage-free, and contamination-free soap film transfer printing technique is reported that enables the wrinkle-free transfer of ultrathin electronic films, precise alignment in a transparent manner, and conformal and adhesion-independent printing onto various substrates, including those too topographically and adhesively challenging by existing methods. In principle, not only the pattern, resolution, and thickness of transferred films, but also the curvature, depth, and adhesion of target substrates are unlimited, while the size of transferred films can be as high as meter-scale. To demonstrate the capabilities of soap film transfer printing, pre-fabricated ultrathin electronics with multiple patterns, single micron resolution, sub-micron thickness, and centimeter size are conformably integrated onto the ultrathin web, ultra-soft cotton, DVD-R disk with the minimum radius of curvature of 131 nm, interior cavity of Klein bottle and dandelion with ultralow adhesion. The printed ultrathin sensors show superior conformabilities and robust adhesion, leading to engineering opportunities including electrocardiogram (ECG) signal acquisition and temperature measurement in aqueous environments.

3.
Acta Biomater ; 170: 519-531, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659729

RESUMO

Understanding the principles underlying the self-organization of stem cells into tissues is fundamental for deciphering human embryo development. Here, we report that, without three-dimensional (3D) extracellular matrix (ECM) overlay, human pluripotent stem cells (hPSCs) cultured on two-dimensional soft elastic substrates can self-organize into 3D cysts resembling the human epiblast sac in a stiffness-dependent manner. Our theoretical modeling predicts that this cyst organization is facilitated and guided by the spontaneous nesting of the soft substrate, which results from the adhesion-dependent mechanical interaction between cells and substrate. Such substrate nesting is sufficient for the 3D assembly and polarization of hPSCs required for cyst organization, even without 3D ECM overlay. Furthermore, we identify that the reversible substrate nesting and cyst morphogenesis also require appropriate activation of ROCK-Myosin II pathway. This indicates a unique set of tissue morphomechanical signaling mechanisms that clearly differ from the canonical cystogenic mechanism previously reported in 3D ECM. Our findings highlight an unanticipated synergy between mechanical microenvironment and mechanotransduction in controlling tissue morphogenesis and suggest a mechanics-based strategy for generation of hPSCs-derived models for early human embryogenesis. STATEMENT OF SIGNIFICANCE: Soft substrates can induce the self-organization of human pluripotent stem cells (hPSCs) into cysts without three-dimensional (3D) extracellular matrix (ECM) overlay. However, the underlying mechanisms by which soft substrate guides cystogenesis are largely unknown. This study shows that substrate nesting, resulting from cell-substrate interaction, plays an important role in cyst organization, including 3D assembly and apical-basal polarization. Additionally, actomyosin contractility mediated by the ROCK-Myosin II pathway also contributes to the substrate deformation and cyst morphology. These findings demonstrate the interplay between the mechanical microenvironment and cells in tissue morphogenesis, suggesting a mechanics-based strategy in building hPSC-derived models for early human embryo development.

4.
Phys Rev E ; 107(2-1): 024405, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932565

RESUMO

The morphology and motion behavior of a cell are highly influenced by its external biological, chemical, and physical stimuli, and geometric confinement. In this paper, it is revealed that the mean curvature of the substrate significantly influences the adhesion of vesicles. By employing the variational method and investigating the Helfrich free energy, the configuration of axisymmetric vesicles adhered to curved spherical substrates is obtained theoretically. Moreover, numerical simulations based on the finite element method are also carried out to investigate the adhesion of vesicles on curved substrates with complex shapes. It is found that for a fixed area of a vesicle, its total free energy depends mainly on the mean curvature of the adhesion region but is insensitive to the specific shape of the substrate, and the total free energy monotonically decreases with the increase in the mean curvature. In addition, possible biological significances of the curvature-dependent adhesion, such as the shape of the cell and antibiofouling, are discussed. This study may deepen our understanding of the underlying mechanisms of adhesion in cellular activities.

5.
Soft Matter ; 19(4): 670-678, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36597934

RESUMO

The ability to realize the self-removal of condensed droplets from a surface is of critical importance for science and applications such as water harvesting and thermal engineering. Despite the enormous interest in micro/nanotextured superhydrophobic materials for high-efficiency condensation, a clear picture of the wetting state transition of condensed droplets is missing, particularly, on a single-droplet level of the order of micrometers. Herein, by varying a substantial parameter space of the contact angle and the geometry of the pillared textures, we have quantified the wetting transition of individual droplets during condensation. We found that a droplet is finally either spontaneously removed from the textures due to a Laplace pressure difference or wets the textures; four different wetting state transition modes have been identified numerically and they are classified in a phase diagram. Simple theories have been constructed to correlate the critical conditions of the wetting state transition to the wettability and geometry of the textures, and they were verified experimentally. We found that the self-removal of condensed droplets benefits from the contact angle and the height of the pillars. These findings not only enhance our fundamental understanding of the wetting state transition of condensed droplets but also allow the rational design of micro/nanotextured water-repellent materials for anti-fogging and anti-wetting.

6.
Phys Rev Lett ; 129(10): 104501, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112454

RESUMO

A falling liquid drop, after impact on a rigid substrate, deforms and spreads, owing to the normal reaction force. Subsequently, if the substrate is nonwetting, the drop retracts and then jumps off. As we show here, not only is the impact itself associated with a distinct peak in the temporal evolution of the normal force, but also the jump-off, which was hitherto unknown. We characterize both peaks and elucidate how they relate to the different stages of the drop impact process. The time at which the second peak appears coincides with the formation of a Worthington jet, emerging through flow focusing. Even low-velocity impacts can lead to a surprisingly high second peak in the normal force, even larger than the first one, namely when the Worthington jet becomes singular due to the collapse of an air cavity in the drop.

7.
Nat Commun ; 13(1): 5381, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104319

RESUMO

Large droplets emerging during dropwise condensation impair surface properties such as anti-fogging/frosting ability and heat transfer efficiency. How to spontaneously detach massive randomly distributed droplets with controlled sizes has remained a challenge. Herein, we present a solution called condensation droplet sieve, through fabricating microscale thin-walled lattice structures coated with a superhydrophobic layer. Growing droplets were observed to jump off this surface once becoming slightly larger than the lattices. The maximum radius and residual volume of droplets were strictly confined to 16 µm and 3.2 nl/mm2 respectively. We reveal that this droplet radius cut off is attributed to the large tolerance of coalescence mismatch for jumping and effective isolation of droplets between neighboring lattices. Our work brings forth a strategy for the design and fabrication of high-performance anti-dew materials.

8.
Nat Commun ; 13(1): 3141, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668091

RESUMO

Guided drop transport is of great importance in various water and thermal management technologies. Unidirectional drop transport on a hot surface has been widely developed, but a bidirectional reversal is still challenging. Here, we report a steerable transport of drop impinging on heated concentric microgroove arrays, on which the directionality of drop transport is dictated by the drop boiling modes. In the transition boiling state, the driving force originated from the Laplace pressure difference rendered by the microgrooves, which enables the drop rebounding towards the center of curvature. While in the film boiling state, a net force towards the opposite side is generated between the grooves and the penetrated liquid, that drives the drop far away from the center of curvature. Our experimental and theoretical results uncover that the lateral displacement is controlled by both the Weber number and off-center distance. These findings strengthen our fundamental understanding of drop impact dynamics at high temperatures and are essential for effective cooling of hot-spot cores and drop sieving.

9.
Nat Commun ; 13(1): 2685, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562518

RESUMO

Understanding the interactions between liquids and solids is important for many areas of science and technology. Microtextured surfaces have been extensively studied in microfluidics, DNA technologies, and micro-manufacturing. For these applications, the ability to precisely control the shape, size and location of the liquid via textured surfaces is of particular importance for the design of fluidic-based systems. However, this has been passively realized in the wetting state thanks to the pinning of the contact line, leaving the non-wetting counterpart challenging due to the low liquid affinity. In this work, confinement is imposed on droplets located on well-designed shapes and arrangements of microtextured surfaces. An active way to shape non-wetting water and liquid metal droplets into various polygons ranging from triangles, squares, rectangles, to hexagons is developed. The results suggest that energy barriers in different directions account for the movement of the contact lines and the formation of polygonal shapes. By characterizing the curvature of the liquid-vapour meniscus, the morphology of the droplet is correlated to its volume, thickness, and contact angle. The developed liquid-based patterning strategy under active regulation with low adhesion looks promising for low-cost micromanufacturing technology, DNA microarrays, and digital lab-on-a-chip.


Assuntos
Microfluídica , Água , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Molhabilidade
10.
Soft Matter ; 18(18): 3575-3582, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35466990

RESUMO

As a species of insects living on water, water striders jump from the water surface to avoid predation and then steadily land without piercing the surface. This spectacular property has attracted extensive interests since it provides bio-inspirations for designing functional microrobots moving on water. In this work, we investigate the landing dynamics of water striders by using artificial striders with different masses and leg lengths. It is found that once a water strider has landed, it oscillates on the water surface and the amplitude decays gradually, triggering a sequence of surface waves. Through scaling analysis, we relate the depth of the dimple that the strider leg displaces to its landing velocity, as well as its leg length and body mass. The subsequent time evolution of the interface where the strider lands is modeled as a damped oscillator, and its energy is exhausted by the surface waves. Moreover, we discuss the maximum depth of the dimple excited by the landing and find that the dynamic process can store more energy than the statically deforming process. Finally, we put forward a criterion of piercing the water surface from the energy point of view. These findings should be of great importance for understanding the locomotion of insects on water and for designing robust water-walking bionic robots.


Assuntos
Heterópteros , Água , Animais , Insetos , Locomoção , Modelos Teóricos
11.
Phys Fluids (1994) ; 34(2): 021302, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35342277

RESUMO

Evaporation of virus-loaded droplets and liquid nanofilms plays a significant role in the pandemic of COVID-19. The evaporation mechanism of liquid nanofilms has attracted much attention in recent decades. In this minireview, we first introduce the relationship between the evaporation process of liquid nanofilms and the pandemic of COVID-19. Then, we briefly provide the frontiers of liquid droplet/nanofilm evaporation on solid surfaces. In addition, we discuss the potential application of machine learning in liquid nanofilm evaporation studies, which is expected to be helpful to build up a more accurate molecular model and to investigate the evaporation mechanism of liquid nanofilms on solid surfaces.

12.
J Phys Chem B ; 126(9): 2040-2059, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35196012

RESUMO

This work presents the development of a new kinetic Monte Carlo algorithm, referred to as Moving Front kinetic Monte Carlo (MFkMC), for simulating processes subject to moving interfaces. This framework is designed to capture the movement of transiently varying interfaces in a kinetic-like manner so that its movement can be described using Monte Carlo sampling. The MFkMC algorithm accomplishes this task by evaluating the behavior of the interfacial molecules and assigning kinetic Monte Carlo-style rate equations that describe the transition probability that a molecule would advance into the neighboring phase, displacing an interfacial molecule from the opposing phase and thus changing the interface. Due to its kinetic Monte Carlo structure, the MFkMC algorithm can additionally account for other important interfacial phenomena, such as interfacial surface reactions. The proposed algorithm was tested via applications to three different simple interfacial case studies. These studies validate the MFkMC algorithm and demonstrate its capabilities to accurately and efficiently simulate a variety of different moving interface systems.

13.
Phys Rev Lett ; 126(23): 234503, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170170

RESUMO

While the drop impact dynamics on stationary surfaces has been widely studied, the way a drop impacts a moving solid is by far less known. Here, we report the physical mechanisms of water drops impacting on superhydrophobic surfaces with horizontal motions. We find that a viscous force is created due to the entrainment of a thin air layer between the liquid and solid interfaces, which competes with the capillary and inertia forces, leading to an asymmetric elongation of the drop and an unexpected contact time reduction. Our experimental and theoretical results uncover consolidated scaling relations: the maximum spreading diameter is controlled by both the Weber and capillary numbers D_{max}/D_{0}∼We^{1/4}Ca^{1/6}, while the dimensionless contact time depends on the capillary number τ/τ_{0}∼Ca^{-1/6}. These findings strengthen our fundamental understandings of interactions between drops and moving solids and open up new opportunities for controlling the preferred water repellency through largely unexplored active approaches.

14.
Soft Matter ; 17(7): 1756-1772, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33393559

RESUMO

In this paper, we systematically investigate the static wetting behavior of a liquid ring in a cylindrical capillary tube. We obtain analytical solutions of the axisymmetric Young-Laplace equation for arbitrary contact angles. We find that, for specific values of the contact angle and the volume of the liquid ring, two solutions of the Young-Laplace equation exist, but only the one with the lower value of the total interfacial energy corresponds to a stable configuration. Based on a numerical scheme determining configurations with a local minimum of the interfacial energy, we also discuss the stability limit between axisymmetric rings and non-axisymmetric configurations. Beyond the stable regime, a liquid plug or a sessile droplet exists instead of a liquid ring, depending on the values of the liquid volume and the contact angle. The stability limit is characterized by specific critical parameters such as the liquid volume, throat diameter, etc. The results are presented in terms of a map showing the different stable liquid morphologies that are obtained from an axisymmetric ring as base state.

15.
Langmuir ; 37(5): 1948-1953, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33506681

RESUMO

In the first part of this research, we reported the experimental study of the drop impact on the superhydrophobic circular groove arrays, which resulted in a directional droplet transport. In the second part, we further explored the influence of the Weber number (We), ridge height (H), and the deviation distance (r) between the impacting point and the center of curvature on the lateral offset distance (ΔL) of bouncing drops. The suggested theoretical analysis is in reasonable agreement with the experimental observations. We demonstrate that a Cassie-Wenzel wetting transition occurred within the microstructures of the relief under the threshold Weber number, for example, We ≅ 19-25, which switched the nature of drop bouncing. The dynamic pressure plays a decisive role in the directional droplet transport. The reported investigation may shed light on the solid-liquid interactions occurring on the patterned hierarchical surfaces and open up new opportunities for directional droplet transportation.

16.
Glob Chall ; 4(11): 2000043, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33163226

RESUMO

Antigravity water transport plays important roles in various applications ranging from agriculture, industry, and environmental engineering. In natural trees, ubiquitous water-flow over 100 m high from roots through the hierarchical xylem to leaves is driven by sunlight-powered continuous evaporation and the negative pressure. Inspired by natural trees, herein an artificial trunk-leaf system is built up to structurally mimic natural trees for a continuous antigravity water delivery. The artificial tree consists of directional microchannels for antigravity water transport, and a top leaf-like hybrid hydrogel that are acts as continuous solar steam evaporator, plus a purposely engineered steam collector. It is found that continuous uniform microchannels of acetylated chitin optimize and enhance capillary rise (≈37 cm at 300 min) and reduce vertical water transport resistance. A remote water harvesting, and purification is performed with a high rate of 1.6 kg m-2 h-1 and 184 cm in height under 1 sun irradiation and the collection efficiency up to 100% by evaporative cooling technique. It is envisioned that the basic design principles underlying the artificial tree can be used to transform solar energy into potential energy.

17.
ACS Omega ; 5(41): 26732-26737, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33110999

RESUMO

An analytical model is developed to describe the shape of heavy droplets on solid surfaces with arbitrary wetting properties (corresponding to the contact angles ranging from 0 to 180°). This model, based on a surface of revolution by rotating two elliptic arcs, reduces to the ellipsoid model for a hydrophilic case. Experimental measurements are also conducted to verify the model. It shows that the mean curvature distribution of the developed model agrees well with that of real droplets on hydrophobic surfaces, even on superhydrophobic surfaces. For water droplets with a volume up to 1000 µL on superhydrophobic surfaces having a 162° contact angle, the errors of the predicted heights, maximum radius, and wetting radius using this model are less than 1.7%, which suggests the capability of this model in studying the wettability of heavy droplets. This model provides an accurate theoretical basis for designing and controlling the spread, transport, condensation, and evaporation of heavy droplets on superhydrophobic surfaces.

18.
Langmuir ; 36(43): 12838-12848, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33094614

RESUMO

Investigation of geometric effects on confined droplets is important for the fundamental understanding of the ubiquitous wetting phenomena in nature as well as for a variety of practical applications. In this study, the effect of geometric confinement on the wetting behavior of a droplet confined between two parallel rigid planes was investigated. The closed solutions of the Young-Laplace equation were derived through an analytical method. These solutions are applicable for arbitrary values of the contact angles and the ratio of the size of the droplet to the separation of the planes. For completely nonwetting and wetting cases, an asymptotic method was employed, and the sophisticated analytical solutions of the Laplace pressure, droplet volume, surface energy, and capillary force were expressed as functions of the size and the separation of the droplet in a simple way. In order to check the applicability of the results, experiments were designed to counteract the gravity of the droplets. The asymptotic results not only quantitatively agree well with the theoretical and experimental results over a large range of the parameter space, but also provide a straightforward view for reflecting the effect of the geometric confinement on the wetting behaviors of droplets.

19.
Langmuir ; 36(32): 9608-9615, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32787135

RESUMO

Directional transport of liquid droplets is crucial for various applications including water harvesting, anti-icing, and condensation heat transfer. Here, bouncing of water droplets with patterned superhydrophobic surfaces composed of circular equidistant grooves was studied. The directional transport of droplets toward the pole of the grooves was observed. The impact of the Weber number, initial polar distance r, and geometrical parameters of the surface on the directional droplet bouncing was experimentally explored. The nature of bouncing was switched when the Weber numbers exceeded We ≅ 20-25. The rebouncing height was slightly dependent on the initial polar coordinate of the impact point for a fixed We, whereas it grew for We > 20. The weak dependence of the droplet spreading time on the Weber number was close to the dependence predicted by the Hertz bouncing, thus evidencing the negligible influence of viscosity in the process. Change in the scaling exponent describing the dependence of the normalized spreading time on the Weber number was registered for We ≅ 25. The universal dependence of the offset distance ΔL of the droplets on the Weber number ΔL/D0 ∼ We1.5 was established. The normalized offset distance decreased with the normalized initial polar distance as ΔL/D0 ∼ (r/S)-1, where D0 and S are the droplet diameter and groove width, respectively. This research may yield more insights into droplet bouncing on patterned surfaces and offer more options in directed droplet transportation.

20.
Soft Matter ; 16(23): 5388-5397, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32490478

RESUMO

The monostable Cassie state is a favorable wetting state for superhydrophobic materials, in which water drops can automatically transfer from the Wenzel wetting state to the Cassie wetting state, such that as a consequence the water repellency can be maintained. Drop impact phenomena are ubiquitous in nature and of critical importance in industry, and previous works show that the efficiency of self-cleaning and dropwise condensation could benefit from drop impact on monostable surfaces. However, whether such a feature is sufficiently robust remains unclear when the temperature of the surface is taken into consideration. Here, we report that there exists a lower bound of the temperature of the surface, under which a transition from the Cassie wetting state to the Wenzel wetting state arises. By varying the temperature of the surface, it is found that the solid-liquid wetting region could be regulated. Based on thermodynamics, we propose a model to predict the controllable wetting region, and we show that the gradual transition of the wetting state is a result of the accumulation of droplets on the nanoscale. Connections between the dynamics occurring at the solid-liquid interfaces on the microscale and the condensation occurring in the nanotextures are constructed. These results deepen our understanding of the breakdown of superhydrophobicity under dynamic impinging in high humidity. Moreover, this study will shed new light on the applications for controllable liquid deposition and surface decoration, such as catalysts on the superhydrophobic surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...