Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2308986, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588510

RESUMO

Activating autologous stem cells after the implantation of biomaterials is an important process to initiate bone regeneration. Although several studies have demonstrated the mechanism of biomaterial-mediated bone regeneration, a comprehensive single-cell level transcriptomic map revealing the influence of biomaterials on regulating the temporal and spatial expression patterns of mesenchymal stem cells (MSCs) is still lacking. Herein, the osteoimmune microenvironment is depicted around the classical collagen/nanohydroxyapatite-based bone repair materials via combining analysis of single-cell RNA sequencing and spatial transcriptomics. A group of functional MSCs with high expression of matrix Gla protein (Mgp) is identified, which may serve as a pioneer subpopulation involved in bone repair. Remarkably, these Mgp high-expressing MSCs (MgphiMSCs) exhibit efficient osteogenic differentiation potential and orchestrate the osteoimmune microenvironment around implanted biomaterials, rewiring the polarization and osteoclastic differentiation of macrophages through the Mdk/Lrp1 ligand-receptor pair. The inhibition of Mdk/Lrp1 activates the pro-inflammatory programs of macrophages and osteoclastogenesis. Meanwhile, multiple immune-cell subsets also exhibit close crosstalk between MgphiMSCs via the secreted phosphoprotein 1 (SPP1) signaling pathway. These cellular profiles and interactions characterized in this study can broaden the understanding of the functional MSC subpopulations at the early stage of biomaterial-mediated bone regeneration and provide the basis for materials-designed strategies that target osteoimmune modulation.

2.
BMC Oral Health ; 24(1): 328, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475773

RESUMO

BACKGROUND: In esthetic dentistry, a thorough esthetic analysis holds significant role in both diagnosing diseases and designing treatment plans. This study established a 3D esthetic analysis workflow based on 3D facial and dental models, and aimed to provide an imperative foundation for the artificial intelligent 3D analysis in future esthetic dentistry. METHODS: The established 3D esthetic analysis workflow includes the following steps: 1) key point detection, 2) coordinate system redetermination and 3) esthetic parameter calculation. The accuracy and reproducibility of this established workflow were evaluated by a self-controlled experiment (n = 15) in which 2D esthetic analysis and direct measurement were taken as control. Measurement differences between 3D and 2D analysis were evaluated with paired t-tests. RESULTS: 3D esthetic analysis demonstrated high consistency and reliability (0.973 < ICC < 1.000). Compared with 2D measurements, the results from 3D esthetic measurements were closer to direct measurements regarding tooth-related esthetic parameters (P<0.05). CONCLUSIONS: The 3D esthetic analysis workflow established for 3D virtual patients demonstrated a high level of consistency and reliability, better than 2D measurements in the precision of tooth-related parameter analysis. These findings indicate a highly promising outlook for achieving an objective, precise, and efficient esthetic analysis in the future, which is expected to result in a more streamlined and user-friendly digital design process. This study was registered with the Ethics Committee of Peking University School of Stomatology in September 2021 with the registration number PKUSSIRB-202168136.


Assuntos
Estética Dentária , Dente , Humanos , Reprodutibilidade dos Testes , Fluxo de Trabalho , Face , Desenho Assistido por Computador
3.
Dent Mater ; 40(4): 674-688, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38388252

RESUMO

OBJECTIVE: Polyetheretherketone (PEEK), a biomaterial with appropriate bone-like mechanical properties and excellent biocompatibility, is widely applied in cranio-maxillofacial and dental applications. However, the lack of antibacterial effect is an essential drawback of PEEK material and might lead to infection and osseointegration issues. This study aims to apply a natural antibacterial agent, totarol coating onto the 3D printed PEEK surface and find an optimized concentration with balanced cytocompatibility, osteogenesis, and antibacterial capability. METHODS: In this study, a natural antibacterial agent, totarol, was applied as a coating to fused filament fabrication (FFF) 3D printed PEEK surfaces at a series of increasing concentrations (1 mg/ml, 5 mg/ml, 10 mg/ml, 15 mg/ml, and 20 mg/ml). The samples were then evaluated for cytocompatibility with L929 fibroblast and SAOS-2 osteoblast using live/dead staining and CCK-8 assay. The antibacterial capability was assessed by crystal violet staining, live/dead staining, and scanning electron microscopy (SEM) utilizing the oral primary colonizer S. gordonii and isolates of mixed oral bacteria in a stirring system simulating the oral environment. The appropriate safe working concentration for totarol coating is selected based on the results of the cytocompatibility and antibacterial test. Subsequently, the influence on osteogenic differentiation was evaluated by alkaline phosphatase (ALP) and alizarin red staining (ARS) analysis of pre-osteoblasts. RESULTS: Our results showed that the optimal concentration of totarol solution for promising antibacterial coating was approximately 10 mg/ml. Such surfaces could play an excellent antibacterial role by inducing a contact-killing effect with an inhibitory effect against biofilm development without affecting the healing of soft and hard tissues around FFF 3D printed PEEK implants or abutments. SIGNIFICANCE: This study indicates that the totarol coated PEEK has an improved antibacterial effect with excellent biocompatibility providing great clinical potential as an orthopedic/dental implant/abutment material.


Assuntos
Abietanos , Benzofenonas , Implantes Dentários , Osteogênese , Polímeros , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Cetonas/farmacologia , Cetonas/química , Antibacterianos/farmacologia , Antibacterianos/química , Impressão Tridimensional , Propriedades de Superfície
4.
Cell Prolif ; 57(2): e13547, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37697490

RESUMO

Apoptotic vesicles (apoVs) are nanoscale vesicles derived from billions of apoptotic cells involved in the maintenance of the human body's homeostasis. Previous researches have shown that some apoVs, such as those derived from mesenchymal stem cells, contribute to bone formation. However, those apoVs cannot be extracted from patients in large quantities, and cell expansion is needed before apoV isolation, which limits their clinical translation. Mature RBCs, which have no nuclei or genetic material, are easy to obtain, showing high biological safety as a source of extracellular vesicles (EVs). Previous studies have demonstrated that RBC-derived EVs have multiple biological functions, but it is unknown whether RBCs produce apoVs and what effect these apoVs have on bone regeneration. In this study, we isolated and characterized RBC-derived apoVs (RBC-apoVs) from human venous blood and investigated their role in the osteogenesis of human bone mesenchymal stem cells (hBMSCs). We showed that RBCs could produce RBC-apoVs that expressed both general apoVs markers and RBC markers. RBC-apoVs significantly promoted osteogenesis of hBMSCs and enhanced bone regeneration in rat calvarial defects. Mechanistically, RBC-apoVs regulated osteogenesis by transferring carbonic anhydrase 1 (CA1) into hBMSCs and activating the P38 MAPK pathway. Our results indicated that RBC-apoVs could deliver functional molecules from RBCs to hBMSCs and promote bone regeneration, pointing to possible therapeutic use in bone tissue engineering.


Assuntos
Anidrases Carbônicas , Vesículas Extracelulares , Humanos , Ratos , Animais , Diferenciação Celular , Regeneração Óssea , Osteogênese , Vesículas Extracelulares/metabolismo , Eritrócitos , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/farmacologia
5.
NPJ Regen Med ; 8(1): 56, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833374

RESUMO

Recruiting endogenous stem cells to bone defects without stem cell transplantation and exogenous factor delivery represents a promising strategy for bone regeneration. Herein, we develop an alkaline shear-thinning micro-nanocomposite hydrogel (10-MmN), aiming to alkaline-activate endogenous TGFß1 and achieve in situ bone regeneration. It contains polyethyleneimine (PEI)-modified gelatin, laponite nanoplatelets (LAP), a bicarbonate buffer with a pH of 10, and gelatin microspheres (MSs). PEI-modified gelatin plays a pivotal role in hydrogel fabrication. It endows the system with sufficient positive charges, and forms a shear-thinning nanocomposite matrix in the pH 10 buffer (10-mN) with negatively charged LAP via electrostatic gelation. For biological functions, the pH 10 buffer dominates alkaline activation of endogenous serum TGFß1 to recruit rat bone marrow stem cells through the Smad pathway, followed by improved osteogenic differentiation. In addition, MSs are incorporated into 10-mN to form 10-MmN, and function as substrates to provide good attachment sites for the recruited stem cells and facilitate further their osteogenic differentiation. In a rat critical-sized calvarial defect model, 10-MmN exhibits excellent biocompatibility, biodegradability, hydrogel infusion and retention in bone defects with flexible shapes and active bleeding. Importantly, it repairs ~95% of the defect areas in 3 months by recruiting TGFßR2+ and CD90+CD146+ stem cells, and promoting cell proliferation, osteogenic differentiation and bone formation. The present study provides a biomaterial-based strategy to regulate alkalinity in bone defects for the initiation of endogenous TGFß signaling, which can be extended to treat other diseases.

6.
Biomedicines ; 11(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37626688

RESUMO

Primary bone mesenchymal stem cells (BMSCs) gradually lose stemness during in vitro expansion, which significantly affects the cell therapeutic effects. Here, we chose murine PαS (SCA-1+PDGFRα+CD45-TER119-) cells as representative of BMSCs and aimed to explore the premium culture conditions for PαS cells. Freshly isolated (fresh) PαS cells were obtained from the limbs of C57/6N mice by fluorescence-activated cell sorting (FACS). We investigated the differences in the stemness of PαS cells by proliferation, differentiation, and stemness markers in vitro and by ectopic osteogenesis and chondrogenesis ability in vivo, as well as the changes in the stemness of PαS cells during expansion in vitro. Gain- and loss-of-function experiments were applied to investigate the critical role and underlying mechanism of the basic helix-loop-helix family member E40 (BHLHE40) in maintaining the stemness of PαS cells. The stemness of fresh PαS cells representative in vivo was superior to that of passage 0 (P0) PαS cells in vitro. The stemness of PαS cells in vitro decreased gradually from P0 to passage 4 (P4). Moreover, BHLHE40 plays a critical role in regulating the stemness of PαS cells during in vitro expansion. Mechanically, BHLHE40 regulates the stemness of PαS cells by targeting Zbp1 through the Wnt/ß-catenin signaling pathway. This work confirms that BHLHE40 is a critical factor for regulating the stemness of PαS cells during expansion in vitro and may provide significant indications in the exploration of premium culture conditions for PαS cells.

7.
Tissue Eng Part B Rev ; 29(5): 545-557, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37183418

RESUMO

Organoids are widely considered to be ideal in vitro models that have been widely applied in many fields, including regenerative medicine, disease research and drug screening. It is distinguished from other three-dimensional in vitro culture model systems by self-organization and sustainability in long-term culture. The three core components of organoid culture are cells, exogenous factors, and culture matrix. Due to the complexity of bone tissue, and heterogeneity of osteogenic stem/progenitor cells, it is challenging to construct organoids for modeling skeletal systems. In this study, we examine current progress in the development of skeletal system organoid culture systems and analyze the current research status of skeletal stem cells, their microenvironmental factors, and various potential organoid culture matrix candidates to provide cues for future research trajectory in this field. Impact Statement The emergence of organoids has brought new opportunities for the development of many biomedical fields. The bone organoid field still has much room for exploration. This review discusses the characteristics distinguishing organoids from other three-dimensional model systems and examines current progress in the organoid production of skeletal systems. In addition, based on core elements of organoid cultures, three main problems that need to be solved in bone organoid generation are further analyzed. These include the heterogeneity of skeletal stem cells, their microenvironmental factors, and potential organoid culture matrix candidates. This information provides direction for the future research of bone organoids.

8.
Signal Transduct Target Ther ; 8(1): 126, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36997513

RESUMO

Bone marrow mesenchymal stromal/stem cells (MSCs) are a heterogeneous population that can self-renew and generate stroma, cartilage, fat, and bone. Although a significant progress has been made toward recognizing about the phenotypic characteristics of MSCs, the true identity and properties of MSCs in bone marrow remain unclear. Here, we report the expression landscape of human fetal BM nucleated cells (BMNCs) based on the single-cell transcriptomic analysis. Unexpectedly, while the common cell surface markers such as CD146, CD271, and PDGFRa used for isolating MSCs were not detected, LIFR+PDGFRB+ were identified to be specific markers of MSCs as the early progenitors. In vivo transplantation demonstrated that LIFR+PDGFRB+CD45-CD31-CD235a- MSCs could form bone tissues and reconstitute the hematopoietic microenvironment (HME) effectively in vivo. Interestingly, we also identified a subpopulation of bone unipotent progenitor expressing TM4SF1+CD44+CD73+CD45-CD31-CD235a-, which had osteogenic potentials, but could not reconstitute HME. MSCs expressed a set of different transcription factors at the different stages of human fetal bone marrow, indicating that the stemness properties of MSCs might change during development. Moreover, transcriptional characteristics of cultured MSCs were significantly changed compared with freshly isolated primary MSCs. Our cellular profiling provides a general landscape of heterogeneity, development, hierarchy, microenvironment of the human fetal BM-derived stem cells at single-cell resolution.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Humanos , Transcriptoma/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Células da Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo
9.
Carbohydr Polym ; 297: 120027, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184142

RESUMO

Delayed inflammatory reaction and poor osteogenesis are the two main causes of failure for bone-defect healing. Accordingly, in the present study, a dual-responsive hydrogel composite was successfully fabricated in which near-infrared (NIR)-light-responsive polydopamine-coated magnesium-calcium carbonate microspheres are incorporated into a thermo-responsive hydroxybutyl chitosan hydrogel to provide sequential delivery of the anti-inflammatory drug aspirin and osteogenic bone morphogenetic protein 2 (BMP-2). By initially releasing aspirin rapidly, the hydrogel composite efficiently ameliorates early-stage inflammatory reaction and promotes transition to the regenerative phase. Then, the hydrogel composite allows NIR-light-responsive release of BMP-2, which maximizes its osteoinductive effects. Using an SD rat calvaria-defect model, the sequential and controllable release achieved by the hydrogel is demonstrated to promote new-bone formation. Thus, the current study provides an efficient alternative strategy for developing multifunctional therapeutic biomaterials for bone tissue engineering.


Assuntos
Quitosana , Hidrogéis , Animais , Aspirina/farmacologia , Materiais Biocompatíveis/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea , Carbonato de Cálcio , Quitosana/análogos & derivados , Quitosana/farmacologia , Hidrogéis/farmacologia , Indóis , Magnésio/farmacologia , Osteogênese , Polímeros , Ratos , Ratos Sprague-Dawley
10.
Bioact Mater ; 18: 492-506, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35415308

RESUMO

Understanding mechanisms underlying the heterogeneity of multipotent stem cells offers invaluable insights into biogenesis and tissue development. Extracellular matrix (ECM) stiffness has been acknowledged as a crucial factor regulating stem cell fate. However, how cells sense stiffness cues and adapt their metabolism activity is still unknown. Here we report the novel role of mitochondrial phosphoenolpyruvate carboxykinase (PCK2) in enhancing osteogenesis in 3D ECM via glycolysis. We experimentally mimicked the physical characteristics of 3D trabeculae network of normal and osteoporotic bone with different microstructure and stiffness, observing that PCK2 promotes osteogenesis in 3D ECM with tunable stiffness in vitro and in vivo. Mechanistically, PCK2 enhances the rate-limiting metabolic enzyme pallet isoform phosphofructokinase (PFKP) in 3D ECM, and further activates AKT/extracellular signal-regulated kinase 1/2 (ERK1/2) cascades, which directly regulates osteogenic differentiation of MSCs. Collectively, our findings implicate an intricate crosstalk between cell mechanics and metabolism, and provide new perspectives for strategies of osteoporosis.

11.
JMIR Serious Games ; 10(1): e30653, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35262501

RESUMO

BACKGROUND: Virtual reality (VR) dental simulators are currently used in preclinical skills training. However, with the development of extended reality technologies, the use of mixed reality (MR) has shown significant advantages over VR. OBJECTIVE: This study aimed to describe the research and development of a newly developed MR and haptic-based dental simulator for tooth preparation and to conduct a preliminary evaluation of its face validity. METHODS: A prototype of the MR dental simulator for tooth preparation was developed by integrating a head-mounted display (HMD), special force feedback handles, a foot pedal, computer hardware, and software program. We recruited 34 participants and divided them into the Novice group (n=17) and Skilled group (n=17) based on their clinical experience. All participants prepared a maxillary right central incisor for an all-ceramic crown in the dental simulator, completed a questionnaire afterward about their simulation experience, and evaluated hardware and software aspects of the dental simulator. RESULTS: Of the participants, 74% (25/34) were satisfied with the overall experience of using the Unidental MR Simulator. Approximately 90% (31/34, 91%) agreed that it could stimulate their interest in learning, and 82% (28/34) were willing to use it for skills training in the future. Differences between the 2 study groups in their experience with the HMD (resolution: P=.95; wearing comfort: P=.10), dental instruments (P=.95), force feedback of the tooth (P=.08), simulation of the tooth preparation process (P=.79), overall experience with the simulation (P=.47), and attitude toward the simulator (improves skills: P=.47; suitable for learning: P=.36; willing to use: P=.89; inspiring for learning: P=.63) were not significant. The Novice group was more satisfied with the simulator's ease of use (P=.04). There were significant positive correlations between the overall experience with the simulation and the HMD's resolution (P=.03) and simulation of the preparation process (P=.001). CONCLUSIONS: The newly developed Unidental MR Simulator for tooth preparation has good face validity. It can achieve a higher degree of resemblance to the real clinical treatment environment by improving the positional adjustment of the simulated patients, for a better training experience in dental skills.

12.
BMC Oral Health ; 22(1): 34, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148735

RESUMO

BACKGROUND: An interdisciplinary treatment simulation and smile design before a complex esthetic rehabilitation is important for clinicians' decision-making and patient motivation. Meanwhile, intervention and interaction are necessary for dental specialists in these complex rehabilitations. However, it is difficult to visualize an interdisciplinary treatment plan by using the conventional method, especially when orthognathic surgery is involved, thus hindering communication between dental specialists. This research aims to establish a 3D digital workflow of interdisciplinary treatment simulation to solve this problem. METHODS: An interdisciplinary 3D digital workflow of simulated treatment plan for complex esthetic rehabilitation was established. Eleven patients were enrolled and illustrated with their treatment plans using 3D treatment simulation, as well as 2D digital smile design (DSD) plus wax-up. Visual analogue scales (VAS) were used to rate the intuitiveness, understanding, and satisfaction or help between the two methods by patients and dental specialists. RESULTS: According to the ratings from the patients, 3D treatment simulation showed obvious advantages in the aspects of intuitiveness (9.7 ± 0.5 vs 6.4 ± 1.4) and treatment understanding (9.1 ± 0.8 vs 6.6 ± 1.5), and the satisfaction rates were also higher (9.0 ± 0.6 vs 7.1 ± 1.8). Dental specialists regarded the 3D digital plans as more intuitive (8.9 ± 0.8 vs 5.9 ± 1.0) and useful to understand the plans from the other specialists (8.9 ± 0.7 vs 6.1 ± 1.0) and helpful to their own treatment plans (8.7 ± 0.9 vs 5.9 ± 1.4). CONCLUSIONS: The interdisciplinary 3D digital treatment simulation helps both patients and dental specialists to improve treatment understanding, and facilitates dental specialists for decision-making before complex esthetic rehabilitation. TRIAL REGISTRATION: This study was registered in the National Clinical Trials Registry under the identification number MR-11-20-002862. This is an observational study in which we did not assign the intervention.


Assuntos
Estética Dentária , Sorriso , Simulação por Computador , Desenho Assistido por Computador , Humanos , Fluxo de Trabalho
13.
EMBO Rep ; 22(9): e52576, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34382737

RESUMO

The E3 ubiquitin ligase complex CDC20-activated anaphase-promoting complex/Cyclosome (APC/CCDC20 ) plays a critical role in governing mitotic progression by targeting key cell cycle regulators for degradation. Cell division cycle protein 20 homolog (CDC20), the co-activator of APC/C, is required for full ubiquitin ligase activity. In addition to its well-known cell cycle-related functions, we demonstrate that CDC20 plays an essential role in osteogenic commitment of bone marrow mesenchymal stromal/stem cells (BMSCs). Cdc20 conditional knockout mice exhibit decreased bone formation and impaired bone regeneration after injury. Mechanistically, we discovered a functional interaction between the WD40 domain of CDC20 and the DNA-binding domain of p65. Moreover, CDC20 promotes the ubiquitination and degradation of p65 in an APC11-dependent manner. More importantly, knockdown of p65 rescues the bone loss in Cdc20 conditional knockout mice. Our current work reveals a cell cycle-independent function of CDC20, establishes APC11CDC20 as a pivotal regulator for bone formation by governing the ubiquitination and degradation of p65, and may pave the way for treatment of bone-related diseases.


Assuntos
Proteínas de Ciclo Celular , Osteogênese , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Camundongos , Osteogênese/genética , Ubiquitinação
14.
Stem Cell Res Ther ; 12(1): 417, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294143

RESUMO

BACKGROUND: MicroRNAs have been recognized as critical regulators for the osteoblastic lineage differentiation of human adipose-derived stem cells (hASCs). Previously, we have displayed that silencing of miR-137 enhances the osteoblastic differentiation potential of hASCs partly through the coordination of lysine-specific histone demethylase 1 (LSD1), bone morphogenetic protein 2 (BMP2), and mothers against decapentaplegic homolog 4 (SMAD4). However, still numerous molecules involved in the osteogenic regulation of miR-137 remain unknown. This study aimed to further elucidate the epigenetic mechanisms of miR-137 on the osteogenic differentiation of hASCs. METHODS: Dual-luciferase reporter assay was performed to validate the binding to the 3' untranslated region (3' UTR) of NOTCH1 by miR-137. To further identify the role of NOTCH1 in miR-137-modulated osteogenesis, tangeretin (an inhibitor of NOTCH1) was applied to treat hASCs which were transfected with miR-137 knockdown lentiviruses, then together with negative control (NC), miR-137 overexpression and miR-137 knockdown groups, the osteogenic capacity and possible downstream signals were examined. Interrelationships between signaling pathways of NOTCH1-hairy and enhancer of split 1 (HES1), LSD1 and BMP2-SMADs were thoroughly investigated with separate knockdown of NOTCH1, LSD1, BMP2, and HES1. RESULTS: We confirmed that miR-137 directly targeted the 3' UTR of NOTCH1 while positively regulated HES1. Tangeretin reversed the effects of miR-137 knockdown on osteogenic promotion and downstream genes expression. After knocking down NOTCH1 or BMP2 individually, we found that these two signals formed a positive feedback loop as well as activated LSD1 and HES1. In addition, LSD1 knockdown induced NOTCH1 expression while suppressed HES1. CONCLUSIONS: Collectively, we proposed a NOTCH1/LSD1/BMP2 co-regulatory signaling network to elucidate the modulation of miR-137 on the osteoblastic differentiation of hASCs, thus providing mechanism-based rationale for miRNA-targeted therapy of bone defect.


Assuntos
MicroRNAs , Osteogênese , Proteína Morfogenética Óssea 2/genética , Diferenciação Celular , Células Cultivadas , Histona Desmetilases , Humanos , MicroRNAs/genética , Osteogênese/genética , Receptor Notch1/genética , Células-Tronco
15.
Stem Cells ; 39(10): 1395-1409, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34169608

RESUMO

Dual-specificity phosphatases (DUSPs) are defined by their capability to dephosphorylate both phosphoserine/phosphothreonine (pSer/pThr) and phosphotyrosine (pTyr). DUSP5, a member of DUSPs superfamily, is located in the nucleus and plays crucially regulatory roles in the signaling pathway transduction. In our present study, we discover that DUSP5 significantly promotes osteogenic differentiation of mesenchymal stromal cells (MSCs) by activating SMAD1 signaling pathway. Mechanistically, DUSP5 physically interacts with the phosphatase domain of small C-terminal phosphatase 1/2 (SCP1/2, SMAD1 phosphatases) by the linker region. In addition, we further confirm that DUSP5 activates SMAD1 signaling through a SCP1/2-dependent manner. Specifically, DUSP5 attenuates the SCP1/2-SMAD1 interaction by competitively binding to SCP1/2, which is responsible for the SMAD1 dephosphorylation, and thus results in the activation of SMAD1 signaling. Importantly, DUSP5 expression in mouse bone marrow MSCs is significantly reduced in ovariectomized (OVX) mice in which osteogenesis is highly passive, and overexpression of Dusp5 via tail vein injection reverses the bone loss of OVX mice efficiently. Collectively, this work demonstrates that the linker region of DUSP5 maybe a novel chemically modifiable target for controlling MSCs fate choices and for osteoporosis treatment.


Assuntos
Fosfatases de Especificidade Dupla , Osteogênese , Proteína Smad1 , Animais , Proteínas de Transporte , Diferenciação Celular , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Camundongos , Fosfoproteínas Fosfatases , Fosforilação , Transdução de Sinais , Proteína Smad1/genética , Proteína Smad1/metabolismo
16.
J Med Internet Res ; 23(4): e23635, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33830059

RESUMO

The application of virtual reality has become increasingly extensive as this technology has developed. In dental education, virtual reality is mainly used to assist or replace traditional methods of teaching clinical skills in preclinical training for several subjects, such as endodontics, prosthodontics, periodontics, implantology, and dental surgery. The application of dental simulators in teaching can make up for the deficiency of traditional teaching methods and reduce the teaching burden, improving convenience for both teachers and students. However, because of the technology limitations of virtual reality and force feedback, dental simulators still have many hardware and software disadvantages that have prevented them from being an alternative to traditional dental simulators as a primary skill training method. In the future, when combined with big data, cloud computing, 5G, and deep learning technology, dental simulators will be able to give students individualized learning assistance, and their functions will be more diverse and suitable for preclinical training. The purpose of this review is to provide an overview of current dental simulators on related technologies, advantages and disadvantages, methods of evaluating effectiveness, and future directions for development.


Assuntos
Realidade Virtual , Competência Clínica , Simulação por Computador , Educação em Odontologia , Humanos , Software
17.
Cell Prolif ; 54(1): e12956, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33210341

RESUMO

Osteoporosis is a systemic metabolic bone disease with characteristics of bone loss and microstructural degeneration. The personal and societal costs of osteoporosis are increasing year by year as the ageing of population, posing challenges to public health care. Homing disorders, impaired capability of osteogenic differentiation, senescence of mesenchymal stem cells (MSCs), an imbalanced microenvironment, and disordered immunoregulation play important roles during the pathogenesis of osteoporosis. The MSC transplantation promises to increase osteoblast differentiation and block osteoclast activation, and to rebalance bone formation and resorption. Preclinical investigations on MSC transplantation in the osteoporosis treatment provide evidences of enhancing osteogenic differentiation, increasing bone mineral density, and halting the deterioration of osteoporosis. Meanwhile, the latest techniques, such as gene modification, targeted modification and co-transplantation, are promising approaches to enhance the therapeutic effect and efficacy of MSCs. In addition, clinical trials of MSC therapy to treat osteoporosis are underway, which will fill the gap of clinical data. Although MSCs tend to be effective to treat osteoporosis, the urgent issues of safety, transplant efficiency and standardization of the manufacturing process have to be settled. Moreover, a comprehensive evaluation of clinical trials, including safety and efficacy, is still needed as an important basis for clinical translation.


Assuntos
Transplante de Células-Tronco Mesenquimais , Osteoporose/terapia , Animais , Humanos , Células-Tronco Mesenquimais
18.
Theranostics ; 10(25): 11837-11861, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052249

RESUMO

Recently, the rapid development of biomaterials has induced great interest in the precisely targeted treatment of bone-related diseases, including bone cancers, infections, and inflammation. Realizing noninvasive therapeutic effects, as well as improving bone tissue regeneration, is essential for the success of bone­related disease therapies. In recent years, researchers have focused on the development of stimuli-responsive strategies to treat bone-related diseases and to realize bone regeneration. Among the various external stimuli for targeted therapy, near infrared (NIR) light has attracted considerable interests due to its high tissue penetration capacity, minimal damage toward normal tissues, and easy remote control properties. The main objective of this systematic review was to reveal the current applications of NIR light-assisted phototherapy for bone-related disease treatment and bone tissue regeneration. Database collection was completed by June 1, 2020, and a total of 81 relevant studies were finally included. We outlined the various therapeutic applications of photothermal, photodynamic and photobiomodulation effects under NIR light irradiation for bone­related disease treatment and bone regeneration, based on the retrieved literatures. In addition, the advantages and promising applications of NIR light-responsive drug delivery systems for spatiotemporal-controlled therapy were summarized. These findings have revealed that NIR light-assisted phototherapy plays an important role in bone-related disease treatment and bone tissue regeneration, with significant promise for further biomedical and clinical applications.


Assuntos
Doenças Ósseas/terapia , Regeneração Óssea/efeitos da radiação , Raios Infravermelhos/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Fotoquimioterapia/métodos , Terapia Fototérmica/métodos , Animais , Doenças Ósseas/fisiopatologia , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiopatologia , Osso e Ossos/efeitos da radiação , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas/administração & dosagem , Resultado do Tratamento
19.
J Oral Rehabil ; 47 Suppl 1: 91-98, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32762046

RESUMO

BACKGROUND: There is a balance between adipogenic differentiation and osteogenic differentiation of human adipose-derived stem cells (hASCs). It is essential to explore the mechanism of hASCs lineage commitment. In our previous study, UNC-5 netrin receptor B (UNC5B) was identified as a positive regulator for osteogenesis. OBJECTIVE: To further explore the potential roles and mechanisms of UNC5B during adipogenic differentiation and to provide a new method to regulate adipogenesis and osteogenesis of hASCs. METHODS: Lentivirus containing UNC5B shRNA was used for UNC5B knockdown. Plasmids overexpressing UNC5B gene were used for UNC5B upregulation. To investigate the role of UNC5B in adipogenesis in vitro and in vivo, Oil Red O staining, RT-qPCR and transplantation into nude mice were performed. Western blotting analyses were performed to explore the mechanisms of UNC5B in adipogenic differentiation. RESULTS: UNC5B expression in hASCs was significantly increased during adipogenic differentiation. Knockdown of UNC5B enhanced adipogenic differentiation in vitro. Both H&E staining and Oil Red O staining showed more adipose tissue-like constructs in UNC5B-knockdown cells in vivo. Upregulation of UNC5B significantly impaired adipogenic differentiation in vitro. Downregulation of UNC5B could increase phosphorylation of JNK in hASCs. JNK inhibitors reduced adipogenic differentiation of hASCs. CONCLUSION: Our findings showed that UNC5B inhibited adipogenesis of hASCs through JNK signalling. As a whole, UNC5B regulates both adipogenesis and osteogenesis of hASCs.


Assuntos
Adipogenia , Sistema de Sinalização das MAP Quinases , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Nus , Receptores de Netrina/fisiologia , Osteogênese , Células-Tronco
20.
Acta Biomater ; 101: 26-42, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672585

RESUMO

Four-dimensional (4D) bioprinting, in which the concept of time is integrated with three-dimensional (3D) bioprinting as the fourth dimension, has currently emerged as the next-generation solution of tissue engineering as it presents the possibility of constructing complex, functional structures. 4D bioprinting can be used to fabricate dynamic 3D-patterned biological architectures that will change their shapes under various stimuli by employing stimuli-responsive materials. The functional transformation and maturation of printed cell-laden constructs over time are also regarded as 4D bioprinting, providing unprecedented potential for bone tissue engineering. The shape memory properties of printed structures cater to the need for personalized bone defect repair and the functional maturation procedures promote the osteogenic differentiation of stem cells. In this review, we introduce the application of different stimuli-responsive biomaterials in tissue engineering and a series of 4D bioprinting strategies based on functional transformation of printed structures. Furthermore, we discuss the application of 4D bioprinting in bone tissue engineering, as well as the current challenges and future perspectives. STATEMENTS OF SIGNIFICANCE: In this review, we have demonstrated the 4D bioprinting technologies, which integrate the concept of time within the traditional 3D bioprinting technology as the fourth dimension and facilitate the fabrications of complex, functional biological architectures. These 4D bioprinting structures could go through shape or functional transformation over time via using different stimuli-responsive biomaterials and a series of 4D bioprinting strategies. Moreover, by summarizing potential applications of 4D bioprinting in the field of bone tissue engineering, these emerging technologies could fulfill unaddressed medical requirements. The further discussions about future challenges and perspectives will give us more inspirations about widespread applications of this emerging technology for tissue engineering in biomedical field.


Assuntos
Materiais Biocompatíveis/química , Bioimpressão , Osso e Ossos/metabolismo , Osteogênese , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Osso e Ossos/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...