Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(2): 918-926, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34852202

RESUMO

The lack of an efficient method for the identification of tumor antigen-specific T cell receptors (TCRs) impedes the development of T cell-based cancer immunotherapies. Here, we introduce a droplet-based microfluidic platform for function-based screening and sorting of tumor antigen-specific T cells with high throughput. We built a reporter cell line by co-transducing the TCR library and reporter genes at the downstream of TCR signaling, and reporter cells fluoresced upon functionally binding with antigens. We co-encapsulated reporter cells and antigen-presenting cells in droplets to allow for stimulation on a single-cell level. Functioning reporter cells specific against the antigen were identified in the microfluidic channel based on the fluorescent signals of the droplets, which were immediately sorted out using dielectrophoresis. We validated the reporter system and sorting results using flow cytometry. We then performed single-cell RNA sequencing on the sorted cells to further validate this platform and demonstrate the compatibility with genetic characterizations. Our platform provides a means for precise and efficient T cell immunotherapy, and the droplet-based high-throughput TCR screening method could potentially facilitate immunotherapeutic screening and promote T cell-based anti-tumor therapies.


Assuntos
Microfluídica , Linfócitos T , Antígenos de Neoplasias/metabolismo , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Microfluídica/métodos , Linfócitos T/metabolismo
2.
Front Chem ; 8: 238, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373578

RESUMO

We report a new sensor for the specific detection of lead ions (Pb2+) in contaminated water based on fluorescence resonance energy transfer (FRET) between upconversion nanoparticles (UCNPs) as donors and gold nanoparticles (Au NPs) as receptors. The UCNPs modified with Pb2+ aptamers could bind to Au NPs, which were functionalized with complementary DNA through hybridization. The green fluorescence of UCNPs was quenched to a maximum rate of 80% due to the close proximity between the energy donor and the acceptor. In the presence of Pb2+, the FRET process was broken because Pb2+ induced the formation of G-quadruplexes from aptamers, resulting in unwound DNA duplexes and separated acceptors from donors. The fluorescence of UCNPs was restored, and the relative intensity had a significant linear correlation with Pb2+ concentration from 0 to 50 nM. The sensor had a detection limit as low as 4.1 nM in a buffer solution. More importantly, the sensor exhibited specific detection of Pb2+ in complex metal ions, demonstrating high selectivity in practical application. The developed FRET prober may open up a new insight into the specific detection of environmental pollution.

3.
Chem Commun (Camb) ; 54(30): 3783-3786, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29594297

RESUMO

A subtle catalyst design is provided with stably incorporated binary catalytically active centers of CuO and MnO2 on the surface wall of mesoporous TiO2. Such unique features render these mesoporous composites highly promising in the low-temperature selective catalytic reduction of NO with NH3, including high NO conversion efficiency, and superior H2O and SO2 resistance.

4.
J Colloid Interface Sci ; 487: 354-359, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27794236

RESUMO

Phthalate esters (PAEs) are a group of endocrine disrupting compounds, which have been widely used as plasticizers. To alleviate the environmental and health threats from water resources polluted by PAEs, we prepared phenyl functionalized mesoporous silica materials (ph-SBA-15) were synthesized by a simple post-modification approach for rapid and efficient removal of low concentration of di-n-butyl phthalate (DBP) from aqueous solution. Mesostructure, texture, surface chemistry and surface charges were systemically characterized. The obtained ph-SBA-15 possesses a highly ordered mesostructure, a high surface area (418m2/g), uniform mesopores (6.5nm) and high-density organic groups around 11wt.%. Batch adsorption experiments revealed that phenyl modified SBA-15 had an excellent ability to remove DBP with the maximum adsorption capacity up to ∼40mg/g at 25°C. The thermodynamics and kinetics for the adsorption were also investigated, demonstrating an exothermic, multi-layer and fast adsorption process. In addition, DBP adsorption was found to be sensitive to the pH and the uptake was observed to be greatest at around pH 7.0. Furthermore, this material can be effectively regenerated by ethanol.

5.
Yi Chuan ; 38(11): 992-1003, 2016 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-27867149

RESUMO

The yield of soybean is substantially reduced when the crop is grown in salinity-affected soil. This review summarizes the progress achieved in defining the genetic basis of salinity tolerance. Both forward (uncovering the genetic basis of a phenotype by exploiting natural or induced mutations) and reverse (defining the phenotype which arises as a result of an altered DNA sequence) genetics methods have been used to reveal the function of key salinity response genes. Quantitative trait locus analysis has identified six regions of the genome which harbor loci influencing salinity tolerance, and positional cloning has succeeded in isolating one important salt tolerant gene. Meanwhile the application of the genome-wide association study technique has led to the isolation of a second gene involved in salinity tolerance. Reverse genetics experiments have highlighted a number of salinity response genes, mainly including ion transporter genes and transcription factor genes. These studies lay the foundations for understanding the mechanistic basis of salinity tolerance in soybean, knowledge of which would be essential to enable the breeding of highly salinity tolerant soybean cultivars through the use of marker-assisted selection or transgenesis.


Assuntos
Glycine max/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas , Cloreto de Sódio/metabolismo , Proteínas de Plantas/metabolismo , Tolerância ao Sal , Glycine max/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...